Supporting information for the manuscript

Photocatalytic Oxidation of Methane over CuO Decorated ZnO Nanocatalysts

Zhonghua Li,^{‡a,c}, Xiaoyang Pan,^{‡a} Zhiguo Yi ^{a,b,c,*}

^a CAS Key Laboratory of Design and Assembly of Functional Nanostructures & Fujian Provincial

Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese

Academy of Sciences, Fuzhou 350002, China

^b State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of

Ceramics, Chinese Academy of Sciences, Shanghai 200050, China

^c University of Chinese Academy of Sciences, Beijing 100049, China

[‡]*These authors contributed equally.*

*Prof. Zhiguo Yi; E-mail: <u>zhiguo@fjirsm.ac.cn</u>

Contents.

Turnover number calculations.

Fig. S1. The XRD patterns of as-prepared CuO samples.

Fig. S2. The spectrum of simulated solar light. **a**, UV-vis spectrum with marked UV light; **b**, visible light spectrum.

Fig. S3. The schematic diagram of photocatalytic instruments. a, fixed-bed mode; b, flow-bed mode. For operation details please see the section of photocatalytic experiments in Methods following the manuscript text.

Fig. S4. First order reaction kinetics plots of photocatalytic methane oxidation over the CuO/ZnO samples.

Fig. S5. EPR spectra collected upon the 0.8wt%CuO/ZnO sample at 100 K under various conditions. From the bottom-up, the traces are for a fresh sample measured in an air atmosphere, measured in an air atmosphere after illumination, measured after injection CH₄ to the illuminated system, respectively.

Fig. S6. Photocurrent responses of the samples under simulated solar light illumination.

Fig. S7. Room temperature photoluminescence (PL) spectra of pure ZnO and 0.8wt%CuO/ZnO.

Table S1. BET surface area and rate constant k in photo-oxidation reaction of ZnO and the CuO/ZnO samples.

Turnover number calculations

Take reaction formula: $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$, the number of electrons gain and loss in the reaction is $8 \cdot e^{-1}$. We assume that all electrons were excited by light. The amount of substance 20 mL CH_4 : $n_1 = 20 \text{mL}/(22.4 \text{L} \cdot \text{mol}^{-1}) = 8.929 \times 10^{-4} \text{ mol}$; The total amount of substance of electrons gain and loss in the photooxidation of 20 mL CH_4 : $n_2 = 8 \times 8.929 \times 10^{-4} \text{ mol} = 7.1432 \times 10^{-3} \text{ mol}$; For the 0.5 g 0.8wt%CuO/ZnO samples: the amount of substance for ZnO: $n_3 = 99.2\% \times 0.5/81.39$ mol= 6.094×10^{-3} mol, the amount of substance for CuO: $n_4 = 0.8\% \times 0.5/79.545$ mol= 5.029×10^{-5} mol. For ZnO, the Turnover number: n = 7.1432/6.094 = 1.172; For CuO, the Turnover number: $n = 7.1432 \times 10^2/5.029 = 142.04$

Fig. S1. The XRD patterns of as-prepared CuO samples.

Fig. S2. The spectrum of simulated solar light. **a**, UV-vis spectrum with marked UV light; **b**, visible light spectrum.

Fig. S3. The schematic diagram of photocatalytic instruments. a, fixed-bed mode; b, flow-bed mode. For operation details please see the section of photocatalytic experiments in Methods following the manuscript text.

Fig. S4. First order reaction kinetics plots of photocatalytic methane oxidation over the CuO/ZnO samples.

Fig. S5. EPR spectra collected upon the 0.8wt%CuO/ZnO sample at 100 K under various conditions. From the bottom-up, the traces are for a fresh sample measured in an air atmosphere, measured in an air atmosphere after illumination, measured after injection CH₄ to the illuminated system, respectively.

Fig. S6. Photocurrent responses of the samples under simulated solar light illumination.

Fig. S7. Room temperature photoluminescence (PL) spectra of pure ZnO and 0.8wt%CuO/ZnO.

Table S1. BET surface area and rate constant k in photo-oxidation reaction of ZnO and the CuO/ZnO samples.

Samples	ZnO	0.1wt%CuO/ ZnO	0.5wt%CuO/ ZnO	0.8wt%CuO/ ZnO	1.0wt%CuO/ ZnO	
$BET(m^2 \cdot g^{-1})$	29.3	31.1	31.4	33.8	32.3	
k(min ⁻¹)	0.014	0.050	0.086	0.112	0.081	_