Support Information

Carbon Intercalated Ti₃C₂T_x MXene for High-Performance Electrochemical Energy Storage

Lei Shen,^{a,b} Xiaoya Zhou,^a Xinglin Zhang,^a Yizhou Zhang,^a Yunlong Liu,^c Wenjun Wang,^c Weili Si,*^a Xiaochen Dong^{*a}

^aKey Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM),

Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211800, China. E-mail:

iamxcdong@njtech.edu.cn; iamwlsi@njtech.edu.cn

^bDepartment of Chemistry & Materials Engineering, Jiangsu Key Laboratory of Advanced

Functional Materials, Changshu Institute of Technology, Changshu 215500, China.

^cSchool of Physical Science and Information Technology, Liaocheng University, Shandong

252059, China.

Figure S1a. XRD patterns of TD-600, TD-700, TD-800, TD-900 and TD-1000, respectively.

Figure S1b. XRD patterns of TH-600, TH-700, TH-800, TH-900 and TH-1000, respectively.

Figure S2. Raman spectra of TD-600, TD-700, TH-600 and TH-700, respectively.

Figure S3. SEM images of (a-b) Ti₃C₂T_x-DDA, (c) TD-600, (d) TD-700, (e) TH-600, (f) TH-700.

Figure S4. SEM images of (a) TH-900, (b) TD-900, (c) TH-1000, (d) TD-1000.

Figure S5. N2 adsorption-desorption isotherms of (a) $Ti_3C_2T_x$, (b) $Ti_3C_2T_x$ -800, (c) TH-800 and

(d) TD-800

Figure S6. CV curves of TH-800, TH-700, and TH-600 electrodes (scan rates 10 mV s⁻¹).

Figure S7. CV curves of TD-800, TD-700 and TD-600 electrodes (scan rates 10 mV s⁻¹).

Figure S8. CV curves of TD-900, TD-1000, TH-900 and TH-1000 electrodes (scan rates 10 mV

s⁻¹).

Figure S9. GCD curves of $Ti_3C_2T_x$ electrode in the potential window from -0.1 V to 0.5 V at different current densities (1, 2, 5 and 10 Ag⁻¹).

Figure S10. Rate performance of TH-600, TH-700, TD-600, and TD-700 electrodes as the function of scan rate.

Figure S11. Rate performance of TD-900, TD-1000, TH-900 and TH-1000 electrodes as the function of scan rate.

Figure S12. Capacitance retention tests of TH-600, TH-700, TD-600, and TD-700 electrodes in H_2SO_4 .

Figure S13. EIS curves in H_2SO_4 for TH-600, TH-700, TD-600 and TD-700 electrodes. Inset shows the magnified high-frequency region.

	-		
Materials	Capacitance	Cycling	Ref
$Ti_3C_2T_x$ /carbon nanotubes	85 F g ⁻¹ (1 A g ⁻¹)	90% (1000)	[1]
$Ti_3C_2T_x$ /single-walled carbon nanotubes	220 mF cm ⁻² (2 mV s ⁻¹)	95% (10000)	[2]
Mo_2CT_x	196 F g ⁻¹ (2 mV s ⁻¹)	100% (10000)	[3]
400-KOH-Ti ₃ C ₂	517 F g ⁻¹ (1 A g ⁻¹)	100% (10000)	[4]
Macroporous $Ti_3C_2T_x$	380 F g ⁻¹ (2 mV s ⁻¹)	90% (10000)	[5]
Hydrazine intercalation into $Ti_3C_2T_x$	250 F g^{-1} (10 mV s^{-1})	100% (10000)	[6]
$MnO_2/Ti_3C_2T_x$	210.9 F g^{-1} (10 mV s^{-1})	88% (10000)	[7]
Ti ₃ C ₂ -(After HF etching of 216h)	118 F g ⁻¹ (5 mV s ⁻¹)	100% (5000)	[8]
MnO_2 - Ti_3C_2	$377 \text{ mF cm}^{-2} (5 \text{ mV s}^{-1})$	95% (5000)	[9]
N-T $i_3C_2T_x$ -200 °C	192 F g ⁻¹ (1 mV s ⁻¹)	-	[10]
Ti ₃ C ₂ T _x /MWCNT	$150 \text{ F g}^{-1} (2 \text{ mV s}^{-1})$	100% (10000)	[11]
Polymerization pyrrole confined $Ti_3C_2T_x$	416 F g^{-1} (5 mV s^{-1})	92% (25000)	[12]
Poly(9,9-dioctylfluorene)/Ti ₃ C ₂ T _x	$380 \text{ F g}^{-1} (2 \text{ mV s}^{-1})$	100% (10000)	[13]
$Ti_3C_2T_x$	245 F g^{-1} (2 mV s^{-1})	100% (10000)	[14]
This Work	364.3 F g ⁻¹ (1 A g ⁻¹)	100% (10000)	

Table S1 Comparison of specific capacitance and cycle performance with reported MXene-

based composites electrodes

Reference

[1] Y. Dall'Agnese, P. Rozier, P.-L. Taberna, Y. Gogotsi, P. Simon, J. Power Sources 2016, 306, 510.

[2] Q. Fu, X. Wang, N. Zhang, J. Wen, L. Li, H. Gao, X. Zhang, J. Colloid Interf. Sci. 2018, 511, 128.

[3] J. Halim, S. Kota, M. R. Lukatskaya, M. Naguib, M.-Q. Zhao, E. J. Moon, J. Pitock, J.

Nanda, S. J. May, Y. Gogotsi, M. W. Barsoum, Adv. Funct. Mater. 2016, 26, 3118.

- [4] J. Li, X. Yuan, C. Lin, Y. Yang, L. Xu, X. Du, J. Xie, J. Lin, J. Sun, Adv. Energy Mater.
 2017, 7, 1602725.
- [5] M. R. Lukatskaya, S. Kota, Z. Lin, M.-Q. Zhao, N. Shpigel, M. D. Levi, J. Halim, P.-L.Taberna, M. W. Barsoum, P. Simon, Y. Gogotsi, *Nat. Energy* 2017, *2*, 17105.
- [6] O. Mashtalir, M. R. Lukatskaya, A. I. Kolesnikov, E. Raymundo-Pinero, M. Naguib, M. W. Barsoum, Y. Gogotsi, *Nanoscale* 2016, *8*, 9128.
- [7] R. B. Rakhi, B. Ahmed, D. Anjum, H. N. Alshareef, ACS Appl. Mater. Interfaces 2016, 8, 18806.
- [8] Y. Tang, J. Zhu, C. Yang, F. Wang, J. Electrochem. Soc. 2016, 163, A1975.
- [9] Y. Tang, J. Zhu, C. Yang, F. Wang, J. Alloy. Compd. 2016, 685, 194.
- [10]Y. Wen, T. E. Rufford, X. Chen, N. Li, M. Lyu, L. Dai, L. Wang, *Nano Energy* 2017, 38, 368.
- [11] M. Q. Zhao, C. E. Ren, Z. Ling, M. R. Lukatskaya, C. Zhang, K. L. Van Aken, M. W. Barsoum, Y. Gogotsi, *Adv. Mater.* 2015, 27, 339.
- [12] M. Boota, B. Anasori, C. Voigt, M. Q. Zhao, M. W. Barsoum, Y. Gogotsi, *Adv. Mater.***2016**, 28, 1517.
- [13] M. Boota, M. Pasini, F. Galeotti, W. Porzio, M.-Q. Zhao, J. Halim, Y. Gogotsi, Chem. Mater. 2017, 29, 2731.
- [14] M. Ghidiu, M. R. Lukatskaya, M.-Q. Zhao, Y. Gogotsi, M. W. Barsoum, *Nature* 2014, *516*, 78.