Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2019

Supporting Information

Electrochromic WO₃ Thin Films Attain Unprecedented Durability by Potentiostatic Pretreatment

Miguel A. Arvizu[†]*, Hui-Ying Qu[†][§]*, Umut Cindemir[†], Zhen Qiu[†], Edgar A. Rojas-González[†], Daniel Primetzhofer[‡], Claes G. Granqvist[†], Lars Österlund[†] and Gunnar A. Niklasson^{†,**}

[†]Department of Engineering Sciences, The Ångström Laboratory, Uppsala University, P.O. Box 534, SE-751 21 Uppsala, Sweden
[§]MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 150001 Harbin, China
[‡]Department of Physics and Astronomy, The Ångström Laboratory, Uppsala University, P.O. Box 516, SE-751 20 Uppsala, Sweden

*These authors contributed equally to the paper.

^{**}Corresponding author: gunnar.niklasson@angstrom.uu.se

Figure S1. Cottrell plot based on the data in Figure 1, showing current density *j* multiplied by $t^{1/2}$ vs. log(*t*), where *t* is time, for a ~300-nm-thick WO₃ film immersed in LiClO₄–PC and subjected to potentiostatic treatment at 6.0 V vs. Li/Li⁺.

Figure S2. Evolution of coloration efficiency at a wavelength of 550 nm as a function of cycle number for a \sim 300-nm-thick WO₃ film immersed in LiClO₄–PC before and after being subjected to potentiostatic treatment at 6.0 V *vs.* Li/Li⁺ for 24 h. The results are based on charge density data in Figures 2b and 2b' and optical transmittance data in Figures 3a and 3a'.

Figure S3. X-ray diffractograms for a \sim 300-nm-thick WO₃ film, backed by ITO-coated glass, in asdeposited state and after potentiostatic pretreatment in in LiClO₄–PC at 6.0 V vs. Li/Li⁺ for 24 h. Arrows indicate distinct diffraction peaks expected for ITO (JCPDS-ICCD card number 88-0773). The two sets of data are vertically displaced for clarity.

Figure S4. SEM images of a \sim 300-nm-thick WO₃ film (a) in as-deposited state and (b) after potentiostatic pretreatment in LiClO₄–PC at 6.0 V *vs*. Li/Li⁺ for 24 h. Scale bars are 100 nm.

Figure S5. Electrochemical impedance data for a \sim 300-nm-thick WO₃ film, backed by ITO-coated glass, in as-deposited state and after potentiostatic pretreatment in in LiClO₄–PC at 6.0 V vs. Li/Li⁺ for 24 h. Data are plotted in the complex impedance plane. Spectra were taken at the equilibrium potentials given in the figure, and OCP stands for open circuit potential. A few frequencies are marked in the figure. High-frequency resistances are obtained from the intersection of the curves with the real axis; they are dominated by the resistance of ITO but also include a contribution from the electrolyte.

Figure S6. Depth profiling of the stated elements, obtained with ToF-ERDA, of a \sim 300-nm-thick WO₃ film in as-deposited state and after potentiostatic pretreatment in LiClO₄–PC at 6.0 V vs. Li/Li⁺ for 24 h.