Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2019

Electronic Supplementary Information

Binary NiCoO₂-modified graphite felt as an advanced positive electrode

for the vanadium redox flow battery

Yan Xiang^a and Walid A. Daoud*

School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon,

Hong Kong

Corresponding Author

*E-mail: wdaoud@cityu.edu.hk

Fig. S1: XRD spectra of GF, NiO/GF and CoO/GF.

Fig. S2: SEM images of (a) NiO/GF, (b) CoO/GF.

Spectrum 3			Spectrum 4	
Element	Wt%	Atomic%	Wt%	Atomic%
0	0.36	1.31	0.36	1.30
Со	55.86	55.24	57.07	56.44
Ni	43.78	43.45	42.58	42.27
Total	100	100	100	100

Fig. S3: EDX analysis of NiCoO₂ nanoparticles.

Fig. S4: Cyclic voltammograms of GF, TGF, NiO/GF and CoO/GF electrodes at a scan rate of 2.5 mv s^{-1} in $0.2 \text{ M VOSO}_4 + 2 \text{ M H}_2\text{SO}_4$.

Fig. S5: Cyclic voltammograms of GF, TGF, NiO/GF, CoO/GF and NiCoO₂/GF electrodes at a scan rate of 1, 2.5, 5 and 10 mv s⁻¹ in 0.2 M VOSO₄ + 2 M H_2SO_4 .

For an irreversible and quasi-reversible redox reaction, the diffusion coefficient can be calculated according to Equation S1:

$$i_p = 2.99 \times 10^5 \alpha^{1/2} n^{3/2} A C D^{1/2} v^{1/2}$$
 (Equation S1)

where i_p is the peak current density, *n* is the electron transfer in redox reaction, *A* is the surface area of the working electrode, *C* is the concentration of redox species in the electrolyte, *D* is the diffusion coefficient, *v* is the scan rate and α is the charge transfer coefficient.

Fig. S6: Nyquist plots of GF, TGF, NiO/GF and CoO/GF electrodes in 0.1 M VO $_2^+$ / 0.1 M VO $_2^+$ in 2 M H₂SO₄.

Fig. S7: Schematic of the key components of VRFB (A) flow frame plate (B) graphite felt (C) membrane and the cell performance of charge-discharge of the flow cells employing GF and CoO/GF electrodes at a constant current density of (a) 75 mA cm⁻² (b) 100 mA cm⁻² (c) 125 mA cm⁻² (d) 150 mA cm⁻².

Fig. S8: Charge-discharge of the flow cell employing NiCoO₂/GF electrode. After 50 cycles, the electrolyte was refreshed using newly prepared solutions.

Fig. S9: SEM images of (a) NiCoO₂/GF before charge-discharge cycling; (b) NiCoO₂/GF after cycling.