## **Electronic Supplementary Information**



Fig. S1. Photographs of (a) the mixed PVP + Fe(NO<sub>3</sub>)<sub>3</sub>·9H<sub>2</sub>O powder after drying at 80 °C overnight.
(b) As-collected Fe<sub>x</sub>O@NFLG-240 product. (c) As-collected Fe<sub>2</sub>O<sub>3</sub>@NFLG-300 product and (d) as-collected Fe<sub>2</sub>O<sub>3</sub>@NFLG-900 product.



Fig. S2. XRD pattern of Fe<sub>3</sub>C@NFLG as intermediate products before in-situ oxidation treatment during the synthesis of Fe<sub>x</sub>O@NFLG-240.



Fig. S3. (a) SEM image, (b) corresponding EDS elemental mappings C, O, Fe and N element, (c) corresponding EDS spectrum of  $Fe_xO@NFLG-240$ .



**Fig. S4.** Morphological analysis of (a) SEM images, (b) TEM images of low magnification and (c) high magnification, (d) high resolution lattice fringe image of  $Fe_2O_3$ @NFLG-300. (e) and (f) SEM images and (g) TEM images of low magnification and (h) high resolution and lattice fringe image of  $Fe_2O_3$ @NFLG-900.



Fig. S5. XRD patterns of Fe<sub>2</sub>O<sub>3</sub>@NFLG-300 and Fe<sub>2</sub>O<sub>3</sub>@NFLG-900.



Fig. S6. Raman spectra of Fe<sub>2</sub>O<sub>3</sub>@NFLG-300 and Fe<sub>2</sub>O<sub>3</sub>@NFLG-900.



Fig. S7. XPS spectra of (a) full survey profiles, (b) High resolution Fe 2p spectra and (c) High resolution O 1s spectra for  $Fe_2O_3$ @NFLG-300 and  $Fe_2O_3$ @NFLG-900.



**Fig. S8.** Nitrogen adsorption–desorption isotherms and pore size distributions (inset) of (a) Fe<sub>2</sub>O<sub>3</sub>@NFLG-300 and (b) Fe<sub>2</sub>O<sub>3</sub>@NFLG-900.



**Fig. S9. Electrochemical performance of potassium-ion batteries.** (a) Reversible specific capacity and coulombic efficiency and (b) potential versus specific capacity for  $Fe_2O_3$ @NFLG-300 electrode during different cycles at 1.0 A g<sup>-1</sup>, (c) Reversible specific capacity and coulombic efficiency and (d) potential versus specific capacity for  $Fe_2O_3$ @NFLG-900 during different cycles at 1.0 A g<sup>-1</sup>.



**Fig. S10.** (a) XRD profile, (b) Raman spectrum, (c) Low magnification and (d) High magnification TEM images of 3D-NFLG.



**Fig. S11.** Cycling performance of 3D-NFLG at a current density of (a) 2 A g<sup>-1</sup> and (b) 5 A g<sup>-1</sup> for 100 cycles.



Fig. S12. Cyclic Voltammetry profiles of (a)  $Fe_xO@NFLG-240$ , (b)  $Fe_2O_3@NFLG-300$  and (c)  $Fe_2O_3@NFLG-900$  recoded at a sweep rate of 0.1 mV s<sup>-1</sup> between 0.01 and 3.0 V (versus K<sup>+</sup>/ K).



**Fig. S13.** Nyquist plots of (a)  $Fe_xO@NFLG-240$ , (b)  $Fe_2O_3@NFLG-300$  and (c)  $Fe_2O_3@NFLG-900$  electrodes after various cycles. The fitted impedence parameter of (d)  $R_{ct}$  and (e)  $R_f$  for  $Fe_xO@NFLG-240$ ,  $Fe_2O_3@NFLG-300$  and  $Fe_2O_3@NFLG-900$  electrodes versus cycle numbers. (f) The equivalent circuit model used for fitting the Nyquist plots.



**Fig. S14.** (a) Ex situ TEM image of  $Fe_xO@NFLG-240$  electrodes after 100 cycles at 2 A g<sup>-1</sup>. (b) HRTEM image of the cross sectional profile of SEI layer covered on the edge of the graphene nanosheet.

## After 10 cycles



**Fig. S15.** Ex situ STEM image of  $Fe_xO@NFLG-240$  electrodes after (a) 10 cycles at 2 A g<sup>-1</sup> and corresponding EDS elemental mappings of (b) C, (c) N, (d) Fe, (e) F, (f) O, (g) S and (h) K. (i) after 100 cycles at 2 A g<sup>-1</sup> and corresponding elemental mappings of (j) C, (k) N, (l) Fe, (m) F, (n) O, (o) S and (p) K.

| Element | Weight Percentage (wt.%)   |                                          |                                          |  |
|---------|----------------------------|------------------------------------------|------------------------------------------|--|
|         | Fe <sub>x</sub> O@NFLG-240 | Fe <sub>2</sub> O <sub>3</sub> @NFLG-300 | Fe <sub>2</sub> O <sub>3</sub> @NFLG-900 |  |
| Fe      | 47.0                       | 68.3                                     | 70.6                                     |  |
| С       | 29.6                       | 1.26                                     | 0.032                                    |  |
| Ν       | 1.15                       | 0.39                                     | 0.18                                     |  |
| О       | $\geq 20$                  | ≥20                                      | ≥20                                      |  |

**Table S1.** Elemental composition analysis results of  $Fe_xO@NFLG-240$ ,  $Fe_2O_3@NFLG-300$  and $Fe_2O_3@NFLG-900$  by ICP and C-S analysis.

 Table S2. Electrochemical performance of recently reported anode materials for potassium ion

 batteries.

| Material                                                                 | Rate Capability                                                                                                                                          | Cyclability (capacity retention)                                                                                                             | Ref.      |
|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Fe <sub>x</sub> O@NFLG-240                                               | 423 mAh g <sup>-1</sup> at 50 mA g <sup>-1</sup> ,<br>226 mAh g <sup>-1</sup> at 2 A g <sup>-1</sup> ,<br>141 mAh g <sup>-1</sup> at 5 A g <sup>-1</sup> | 206 mAh g <sup>-1</sup> after 1000<br>cycles at 2 A g <sup>-1</sup> ,<br>140 mAh g <sup>-1</sup> after 5000<br>cycles at 5 A g <sup>-1</sup> | This work |
| Hybrid Co <sub>3</sub> O <sub>4</sub> -Fe <sub>2</sub> O <sub>3</sub> /C | -                                                                                                                                                        | 220 mAh g <sup>-1</sup> after 50 cycles<br>at 50 mA g <sup>-1</sup>                                                                          | Ref. [1]  |
| MoS <sub>2</sub> @rGO                                                    | 679 mAh g <sup>-1</sup> at 20 mA g <sup>-1</sup> ,<br>178 mAh g <sup>-1</sup> at 500 mA g <sup>-1</sup>                                                  | 381 mAh g <sup>-1</sup> after 100<br>cycles at 100 mA g <sup>-1</sup>                                                                        | Ref. [2]  |
| Bulk Bi                                                                  | 406.6 mAh g <sup>-1</sup> at 40 mA g <sup>-1</sup> ,<br>321.6 mAh g <sup>-1</sup> at 1.2 A g <sup>-1</sup>                                               | 321.6 mAh g <sup>-1</sup> after 300<br>cycles at 900 mA g <sup>-1</sup>                                                                      | Ref. [3]  |
| Sn <sub>4</sub> P <sub>3</sub> /C                                        | 399.4 mAh g <sup>-1</sup> at 50 mA g <sup>-1</sup><br>221.9 mAh g <sup>-1</sup> at 1 A g <sup>-1</sup> ,                                                 | 307.2 mAh g <sup>-1</sup> after 50<br>cycles at 50 mA g <sup>-1</sup>                                                                        | Ref. [4]  |
| Pistachio-Shuck-Like<br>MoSe <sub>2</sub> /C                             | 382 mAh g <sup>-1</sup> at 200 mA g <sup>-1</sup> ,<br>224 mAh g <sup>-1</sup> at 2 A g <sup>-1</sup>                                                    | 226 mAh g <sup>-1</sup> after 1000<br>cycles at 1 A g <sup>-1</sup>                                                                          | Ref. [5]  |
| NCNT                                                                     | 254.7 mAh g <sup>-1</sup> at 50 mA g <sup>-1</sup>                                                                                                       | 102 mAh g <sup>-1</sup> after 500<br>cycles at 2 A g <sup>-1</sup>                                                                           | Ref. [6]  |

| VSe <sub>2</sub> Nanosheet                                 | 366 mAh g <sup>-1</sup> at 100 mA g <sup>-1</sup> ,<br>172 mAh g <sup>-1</sup> at 2 A g <sup>-1</sup> | 169 mAh g <sup>-1</sup> after 500<br>cycles at 2 A g <sup>-1</sup>     | Ref. [7]  |
|------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-----------|
| Hard Carbon derived from NH <sub>2</sub> -MIL-101(Al)      | 365 mAh g <sup>-1</sup> at 25 mA g <sup>-1</sup> ,<br>118 mAh g <sup>-1</sup> at 3 A g <sup>-1</sup>  | 130 mAh g <sup>-1</sup> after 1100<br>cycles at 1.05 A g <sup>-1</sup> | Ref. [8]  |
| Ultra-High Pyridinic N-<br>Doped Porous Carbon<br>Monolith | 225 mAh g <sup>-1</sup> at 1 A g <sup>-1</sup>                                                        | 150 mAh g <sup>-1</sup> after 3000<br>cycles at 1 A g <sup>-1</sup>    | Ref. [9]  |
| Nitrogen-rich hard carbon                                  | 180 mAh g <sup>-1</sup> at 500 mA g <sup>-1</sup>                                                     | 170 mAh g <sup>-1</sup> after 4000<br>cycles at 500 mA g <sup>-1</sup> | Ref. [10] |

## Reference

- I. Sultana, M. M. Rahman, S. Mateti, V. G. Ahmadabadi, A. M. Glushenkov and Y. Chen, Nanoscale, 2017, 9, 3646-3654.
- K. Xie, K. Yuan, X. Li, W. Lu, C. Shen, C. Liang, R. Vajtai, P. Ajayan and B. Wei, *Small*, 2017, 13, 1701471.
- K. Lei, C. Wang, L. Liu, Y. Luo, C. Mu, F. Li and J. Chen, *Angew. Chem., Int. Ed.*, 2018, 57, 4687-4691..
- 4. W. Zhang, J. Mao, S. Li, Z. Chen and Z. Guo, J. Am. Chem. Soc., 2017, 139, 3316-3319.
- W. Wang, B. Jiang, C. Qian, F. Lv, J. Feng, J. Zhou, K. Wang, C. Yang, Y. Yang and S. Guo, *Adv. Mater.*, 2018, **30**, 1801812.
- 6. P. Xiong, X. Zhao and Y. Xu, *ChemSusChem*, 2018, **11**, 202-208.
- C. Yang, J. Feng, F. Lv, J. Zhou, C. Lin, K. Wang, Y. Zhang, Y. Yang, W. Wang, J. Li and S. Guo, *Adv. Mater.*, 2018, **30**, 1800036.
- J. Yang, Z. Ju, Y. Jiang, Z. Xing, B. Xi, J. Feng and S. Xiong, Adv. Mater., 2018, 30, 1700104.
- Y. Xie, Y. Chen, L. Liu, P. Tao, M. Fan, N. Xu, X. Shen and C. Yan, *Adv. Mater.*, 2017, 29, 1702268.
- C. Chen, Z. Wang, B. Zhang, L. Miao, J. Cai, L. Peng, Y. Huang, J. Jiang, Y. Huang, L. Zhang and J. Xie, *Energy Storage Mater.*, 2017, 8, 161-168.