Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2018

Supporting Information

Pyrene-Functionalized Polymeric Carbon Nitride with Promoted Aqueous-Organic Biphasic Photocatalytic CO₂ Reduction

Xuezhong Gong,^a Sijia Yu,^a Meili Guan,^b Xianglin Zhu^a and Can Xue,^{*a}

^a School of Materials Science and Engineering, Nanyang Technological University, 50

Nanyang Avenue, 639798 Singapore.

^b Institute for Energy Research, Jiangsu University, 301 Xuefu Road, Zhejiang, 212013, P. R. China.

*Corresponding author, Email: cxue@ntu.edu.sg

Fig. S1. (left) FTIR spectra of CN0, 0-PCN, and Py-PCN; (right) ¹³C-NMR spectrum of precursor (1-(4,6-Dichloro-1,3,5-triazin-2-yl)pyrene)

Fig. S2. The shapes of water drops and contact angle on 0-PCN and Py-PCN tablets.

Fig. S3. Mott-Schottky plots for the (a) 0-PCN and (b) Py-PCN.

Table S1. Elemental analysis results for the CN0, 0-PCN and Py-PCN samples.

Samplas	Element content (wt. %)			
Samples	С	Ν	Cl	Н
CN0	33.06	48.36	5.62	3.37
0-PCN	32.15	49.83	4.14	3.16
Py-PCN	34.86	51.02	4.45	4.21

Table S2. Bandgap, Conduction band and Valence band.

Sample	E_g/V	E _{cb} / V, <i>vs</i> NHE, pH 7	E _{vb} / V, <i>vs</i> NHE, pH 7
0-PCN	2.27	-1.07	1.20
Py-PCN	2.31	-1.16	1.15

The CB and VB potential vs. NHE is calculated as:

 $E(vs. NHE) = E(vs. Ag/AgCl) + E_{Ag/AgCl} - 0.059 \text{ pH}, (E_{Ag/AgCl} = +0.197 \text{ V})$

Fig. S4. Relationship between band potential of Py-PCN and CO₂ reduction, as well as involved organic reaction pathway

Fig. S5. (a) Representative fluorescence spectral changes (excitation wavelength, $\lambda_{ex} = 320$ nm) arising from TAOH aliquot produced from the oxidation of TA by hydroxyl radicals produced by irradiated Py-PCN after irradiation of 0.5 mM TA aqueous solution. (b) Kinetics of fluorescence intensity measured at 430 nm measured over photoexcited 0-PCN and Py-PCN as the source of hydroxyl radicals.

Fig. S6. Cycling test of photocatalytic CO₂ reduction over 10% Py-PCN. [Catalyst]=1.0 g/L; 9 ml cyclohexene as solvent and 1 ml of 3.0 M NaHCO₃ as CO₂ source. Light source: 300 W Xeon Lamp.