Electronic Supplementary Information

A 3D Hybrid Nanowire/Microcuboid Optoelectronic Electrode for Maximised Light Harvesting in Perovskite Solar Cells[†]

Wu-Qiang Wu*, and Lianzhou Wang*

Nanomaterials Centre, School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia. E-mail: wuqiang.wu@uq.edu.au, l.wang@uq.edu.au

Fig. S1 (a) XPS survey spectra of the as-prepared TNW. Fitted XPS result of (b) Ti2p and (c) O1s in TNW.

Fig. S2 Digital photos of the bare FTO and FTO/TNW electrodes (TNW-PTO-0.100g). The TNW-PTO-0.100g electrode displayed an enhanced optical transparency.

Fig. S3 Diffused reflectance spectra of the bare FTO glass and different FTO/TNW electrodes prepared using different amount of PTO precursor (as indicated).

Fig. S4 Top-view SEM images of CMC capping layer deposited on top of (a) TNW-PTO-0.075g and (b) TNW-PTO-0.125g.

Fig. S5 Cross-sectional SEM images of the FTO/TNW/CH₃NH₃PbI₃ electrodes constructed using (a) TNW-PTO-0.050g, (b) TNW-PTO-0.075g, (c) TNW-PTO-0.100g and (d) TNW-PTO-0.125g thin films. Thickness of the CH₃NH₃PbI₃-infiltrated TNW layers is indicated using white dashed lines.

Table S1 Morphological parameters of the FTO/TNW/ $CH_3NH_3PbI_3$ electrodes in this study. L_1 is the thickness of the perovskite-infiltrated TNW layer. L_2 is the thickness of the $CH_3NH_3PbI_3$ capping layer and D is the grain size of the $CH_3NH_3PbI_3$ cuboids in the capping layer.

TiO ₂ Film	L_1 (nm)	L_2 (nm)	<i>D</i> (nm)
TNW-PTO-0.050g	120±5	400±10	160-420
TNW-PTO-0.075g	220±5	530±10	360-630
TNW-PTO-0.100g	620±5	600 ± 10	520-1050
TNW-PTO-0.125g	800 ± 5	780 ± 10	630-1800

Fig. S6 Cross-sectional SEM image of a complete PSC based on TNW-PTO-0.100g sample showing the good infiltration of perovskite into the pores of nanowires.

Fig. S7 UV-Vis absorbance spectra of the different TNW/CH₃NH₃PbI₃ films.

Fig. S8 J-V curves of the PCSs based on different TNW electrodes measured under dark.

Fig. S9 Top-view SEM images of the perovskite capping layers prepared with second-step MAI dipping in (a) IPA; (b) IPA:CBZ = 2:1 and (c) IPA:CBZ = 1:1, respectively;

Fig. S10 Photos showing comparison of the perovskite film formation dynamics in MAI/IPA and MAI/IPA/CBZ (IPA:CBZ=2:1) dipping/conversion step.

Fig. S11 XRD patterns of the $CH_3NH_3PbI_3$ films fabricated via a second MAI intercalation step using IPA, IPA:CBZ = 2:1 and IPA:CBZ = 1:1 solution as solvent, respectively.

Table S2. Photovoltaic parameters of the PSCs based on FTO/TNW-PTO-0.100g/CH₃NH₃PbI₃ electrodes fabricated via a second MAI intercalation step using IPA, IPA:CBZ = 2:1 and IPA:CBZ = 1:1 solution as solvent, respectively. These data were recorded under one sun illumination (AM 1.5G, 100 mW cm⁻²).

Solvent composition	$J_{\rm sc}$ (mA cm ⁻²)	V _{oc} (V)	η (%)	FF
IPA	21.8	1.00	15.3	0.70
IPA:CBZ=2:1	23.0	1.04	17.7	0.74
IPA:CBZ=1:1	22.5	1.02	16.5	0.72

Fig. S12 Schematic illustration of step-by-step fabrication procedure for the perovskite film consisting of large grains with improved surface coverage.

Fig. S13 *J-V* curves of the champion PSC device measured by forward scan (SC-FB, purple line) and reverse scan (FB-SC, blue line) with a scan rate of 0.1 V s⁻¹ under AM 1.5 G simulated sun light illumination. This solar cell was constructed using TNW-PTO-0.100g ETL and optimized $CH_3NH_3PbI_3$ cuboids layers fabricated with three-step sequential deposition method.

Fig. S14 Light intensity dependent of *J*-*V* curves for the champion device.

Fig. S15 PL and TRPL measurement of TNW/CMC and TNP/CMC films.

Fig. S16 PCE stability as a function of storage time in ambient conditions for nonencapsulated PSC based on the TNW/CMC hybrid electrode.