Supporting Information

Controllable Nitrogen-Doping of Nanoporous Carbons Enabled by Coordination Frameworks

Wei Zhang^{a‡}, Saiyu Bu^{a‡}, Qinghong Yuan^a*, Qiang Xu^b, Ming Hu^a*

Figure S1. Illustration of pyrrolic-N, pyridinic-N and graphitic-N structures adsorbed by different K atoms. u means that K atoms are adsorbed above the structure, d means that K atoms are adsorbed below the structure. We defined the differential binding energy as $E_{bind}^{diff} = E_{nK/sub} - E_{(n-1)K/sub} - E_{K.1}$ Where, n is the number of K atoms, $E_{nK/sub}$ is the total energy of the N-doped carbon structure with adsorbed n K atoms, $E_{(n-1)K/sub}$ is the total energy of the N-doped carbon structure with adsorbed n-1 K atoms, and E_K is the energy of a K atom in the bulk K.

Figure S2. Illustration of pyrrolic-N, pyridinic-N and graphitic-N structures at different N concentrations. (atomic ratio) (a) pyrrolic-N: 1.05%, 4.35% and 10.34%; (b) pyridinic-N: 4.23%, 9.68% and 17.65%; (c) graphitic-N: 1.39%, 2.78% and 4.17%; (d) Formation energies of different N doping structures.

Figure S3. The population probability of pyrrolic-N, pyridinic-N and graphitic-N with different nitrogen concentration versus to the increase of temperature.

Figure S4. PXRD pattern of the as-synthesized ZIF-8 particles.

Figure S5. SEM image of the as-synthesized ZIF-8 particles.

Figure S6. (a) N_2 adsorption-desorption isotherms and (b) the pore size distribution of ZIF-8 precursor.

Figure S7. SEM images of the samples obtained by annealing the ZIF-8 particles at various temperatures.

Figure S8. Raman spectra of (a) ZIF-8700, (b) ZIF-8800, (c) ZIF-8900 and (d) ZIF-81000.

The spectra were fitted based on the literature.²

Figure S9. The N/C ratios of all the nanoporous carbons obtained at annealing temperature of 600 to 1000 °C.

Figure S10. Elemental mapping of the carbonized sample (ZIF-8₈₀₀).

Figure S11. N1s spectra of the sample obtained by annealing the ZIF-8 particles at 700 °C for 12 h.

Figure S12. C1s spectra of the samples obtained by annealing the ZIF-8 particles at

various temperatures.

Figure S13. Cycling performance of ZIF-8 carbonized under temperatures ranging from 600 °C to 1000 °C with a current of 30 mA g^{-1} .

Figure S14. Rate performance of the ZIF-8 carbonized under various temperatures ranging from 600 °C to 1000 °C with various current density from 50 to 2000 mA g^{-1} .

Figure S15. PXRD pattern of the hard carbon.

Figure S16. (a) N_2 adsorption-desorption isotherms and (b) the pore size distribution of ZIF-8₈₀₀ and hard carbon.

Materials	Capacity	Remaining	Current	References
	Retention (mAh	capacity	Density (mA	
	g ⁻¹)	(cycles)	g ⁻¹)	
ZIF-8800	220	100% (100)	100	This work
Graphite	97	51% (50)	139	Ref. S3
Soft carbon	162	81% (50)	558	Ref. S3
Hard carbon	216	83% (100)	28	Ref. S4
N-graphene	210	78% (100)	100	Ref. S5
Polynanocrystalline	75	50 % (300)	100	Ref. S6
Graphite				
HCNT	232	100% (50)	100	Ref. S7
Mesoporous	198	90% (200)	200	Ref. S8
Carbon				
HCS-SC	186	90% (200)	279	Ref. S9

 Table S1. Comparison of cycling performance of various carbon-based anodes.

REFERENCES

- 1. H. Yildirim, A. Kinaci, Z.-J. Zhao, M. K. Y. Chan and J. P. Greeley, *ACS Appl. Mater. Inter.* 2014, **6**, 21141-21150.
- 2. S. Yamauchi and Y. Kurimoto, J. Wood Sci. 2003, 49, 235-240.
- 3. Z. Jian, W. Luo and X. Ji, J. Am. Chem. Soc. 2015, 137, 11566-11569.
- 4. Z. Jian, Z. Xing, C. Bommier, Z. Li and X. Ji, *Adv. Energy Mater.* 2016, 6, 1501874.
- 5. K. Share, A. P. Cohn, R. Carter, B. Rogers and C. L. Pint, *ACS Nano* 2016, **10**, 9738-9744.
- 6. Z. Xing, Y. Qi, Z. Jian and X. Ji, ACS Appl. Mater. Inter. 2017, 9, 4343-4351.
- Y. Wang, Z. Wang, Y. Chen, H. Zhang, M. Yousaf, H. Wu, M. Zou, A. Cao and R. P. S. Han, *Adv. Mater.* 2018, **30**, 1802074.
- W. Wang, J. Zhou, Z. Wang, L. Zhao, P. Li, Y. Yang, C. Yang, H. Huang and S. Guo, *Adv. Energy Mater.* 2018, 8, 1701648.
- 9. Z. Jian, S. Hwang, Z. Li, A. S. Hernandez, X. Wang, Z. Xing, D. Su and X. Ji, *Adv. Funct. Mater.* 2017, **27**, 1700324.