Supporting Information

Hot-substrate deposition of all-inorganic perovskite films for low-temperature processed high-efficiency solar cells[†]

Ze Wang,^a Xiaodong Liu,^{*ab} Yiwei Lin,^a Yingjie Liao,^a Qi Wei,^d Haoran Chen,^c Jingjing Qiu,^c Yonghua Chen^{*cd} and Yonghao Zheng^{*abe}

^aSchool of Optoelectronic Science and Engineering, University of Electronic Science

and Technology of China (UESTC), Chengdu 610054, China

^bCenter for Applied Chemistry, University of Electronic Science and Technology of China (UESTC), Chengdu 611731, China

°Key Laboratory of Flexible Electronics (KLOFE) & Institution of Advanced Materials

(IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials

(SICAM), Nanjing Tech University (NJTECH), Nanjing 211816, Jiangsu, China

^dShaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical

University (NPU), 127 West Youyi Road, Xi'an 710072, China

^eJiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China

* Corresponding authors:

E-mail: xdliu@uestc.edu.cn, iamyhchen@njtech.edu.cn, zhengyonghao@uestc.edu.cn

Contents

1.	Photo image of hot plate mounted spin-coater	S3
2.	Photographs of CsPbI ₂ Br films	S4
3.	Formation processes of cubic phase CsPbI ₂ Br films	S 5
4.	Photophysical characteristics of the CsPbI ₂ Br films	S7
5.	Large scale SEM images of the CsPbI ₂ Br films	S9
6.	AFM height images of the CsPbI ₂ Br films	S10
7.	Thermal stability of the CsPbI2Br film tested in glove box	S11
8.	Optimization of substrate temperatures	S12
9.	Optimization of post-annealing temperatures	S15
10.	J-V curves measured under different scan rates	S19
11.	J-V curves measured under different scan directions	S20
12.	Thermal stability tests of CsPbI ₂ Br and CH ₃ NH ₃ PbI ₃ PSCs	S21
13.	References	S22

1. Photo image of hot plate mounted spin-coater

Fig. S1 Real photo of hot plate mounted spin-coater used in this work.

In this work, a specially designed spin-coater with a mounted hot plate (in other word, our spin-coater has the heating function) was used to achieve precise control of substrate temperature. The SnO₂-coated ITO substrate was placed on the spin-coater, and then heated to the desired temperature (e.g., 55 °C) using the hot plate integrated into the spin-coater. During the spin-coating process, the substrate was continuously heated on the hot plate at 55 °C, which maintains the 55 °C substrate temperature.

2. Photographs of CsPbI₂Br films

Fig. S2 Photographs of CsPbI₂Br films prepared by (a) hot-casting (substrate temperature was kept at 55 °C) and (b) RT-casting methods with different post-annealing temperatures.

Hot-casting processed CsPbI₂Br films presented a dark brown color, almost independent on the post-annealing temperature (120-180 °C). In contrast, RT-casting processed CsPbI₂Br films exhibited an orange yellow at a low post-annealing temperature of 120 °C, and the color turned to partially black upon post-annealing at 180 °C. This indicates that hot-casting processed CsPbI₂Br films are beneficial for cubic phase formation at a low post-annealing temperature compared to RT-casting processed CsPbI₂Br films.

3. Formation processes of cubic phase CsPbI₂Br films

Fig. S3 UV-vis absorption of the perovskite precursor films prepared by RT-casting and hot-casting methods. The absorption spectra of CsPbI₂Br, CsPbBr₃ and non-perovskite CsPbI₂Br (n-CsPbI₂Br) were plotted together in Fig. S3.

Fig. S4 XRD patterns of CsPbBr₃, CsPbI₂Br and hot-casted precursor films.

Fig. S5 Scheme for the formation of the $CsPbI_2Br$ perovskite films via the (a) RT-casting and (b) hot-casting processes.

4. Photophysical characteristics of the CsPbI₂Br films

Fig. S6 (a) UV-vis absorption, (b) PL and (c) TRPL spectra of $CsPbI_2Br$ films fabricated by conventional RT-casting and hot-casting methods.

Table S1. PL lifetimes extracted from TRPL spectra for $CsPbI_2Br$ films prepared by the two different methods.

Method	A_1	τ_1^a (ns)	A_2	τ_2^a (ns)	A_3	τ_3^a (ns)	$\tau_{\rm ave}({\rm ns})$
RT-casting	0.0016	63.13	0.0164	6.16	0.9820	0.03	0.23
Hot-casting	0.1932	23.01	0.0265	103.61	0.7823	0.51	7.59

^{*a*}The TRPL decay curves were fitted using a tri-exponential decay function:

$$y = y_0 + A_1 e^{-(x-x_0)/\tau_1} + A_2 e^{-(x-x_0)/\tau_2} + A_3 e^{-(x-x_0)/\tau_3}$$

where A_1 , A_2 and A_3 are the relative amplitudes of the components, the lifetime of τ_1 is associated with defect trapping recombination, and τ_2 and τ_3 are both associated with free carrier radiative recombination.^{1,2}

5. Large scale SEM images of the CsPbI₂Br films

Fig. S7 Large scale SEM images of $CsPbI_2Br$ films prepared from the different methods: (a) conventional RT-casting process with subsequent post-annealing at 340 °C; hot-casting process with subsequent post-annealing at (b) 120 °C and (c) 180 °C.

With increasing the post-annealing temperature of the hot-casted precursor film from 120 °C to 180 °C, the grain size of perovskite increases. It is well known that the perovskite crystal growth rate is highly related to the solvent evaporation rate.³ High post-annealing temperature results in the rapid volatilization of DMSO/DMF, and therefore the rapid perovskite crystal growth from a few nucleation sites, leading to the formation of large grains; low temperature results in the low solvent evaporating rate, which allows the crystal growth from a large number of nucleation sites, leading to the formation of small grains.^{4,5}

6. AFM height images of the CsPbI₂Br films

Fig. S8 (a,b) 2D AFM height images and (c,d) corresponding 3D images (5 μ m × 5 μ m) of CsPbI₂Br films prepared from the different methods: (a,c) conventional RT-casting process with subsequent post-annealing at 340 °C; (b,d) hot-casting process with subsequent post-annealing at 180 °C.

7. Thermal stability of the CsPbI₂Br film tested in glove box

Fig. S9 Temporal evolution of UV-vis absorption spectra of (a) traditional organicinorganic hybrid perovskite $CH_3NH_3PbI_3$ and (b) hot-casting processed $CsPbI_2Br$ films, which were placed on a hot plate at 100 °C in a N₂-filled glove box with H₂O and O₂ levels below 1 ppm.

8. Optimization of substrate temperatures

Fig. S10 *J-V* characteristics of CsPbI₂Br-based PSCs fabricated by RT-casing and hotcasting methods with different substrate temperatures. All the perovskite films underwent post-annealing at 340 °C for 10 min.

Table S2. Photovoltaic performance of the CsPbI₂Br-based PSCs fabricated by RTcasing and hot-casting methods with different substrate temperatures. All the perovskite films underwent post-annealing at 340 °C for 10 min.

Substrate temp.	$V_{\rm oc}{}^a$	$J_{ m sc}{}^a$	FF^{a}	PCE ^a
(°C)	(V)	$(mA cm^{-2})$	(%)	(%)
DT	0.50	12.85	45.3	2.91
KI	(0.50 ± 0.02)	(12.60 ± 0.64)	(43.8 ± 2.2)	(2.74 ± 0.13)
40	1.11	14.54	61.4	9.91
40	(1.12 ± 0.01)	(14.55 ± 0.24)	(59.2 ± 1.9)	(9.52 ± 0.38)
45	1.08	14.69	66.9	10.61
45	(1.09 ± 0.01)	(14.52 ± 0.28)	(66.0 ± 2.2)	(10.85 ± 0.59)
50	1.11	15.01	69.2	11.53
50	(1.11 ± 0.01)	(14.89 ± 0.23)	(66.2 ± 2.8)	(10.85 ± 0.59)
55	1.12	15.13	67.3	11.40
55	(1.11 ± 0.02)	(15.05 ± 0.13)	(66.9 ± 1.7)	(11.16 ± 0.16)
60	1.09	15.25	69.5	11.55
00	(1.10 ± 0.01)	(14.83 ± 0.28)	(67.3 ± 2.4)	(10.99 ± 0.37)
(5	1.09	14.76	68.4	11.00
03	(1.09 ± 0.02)	(14.78 ± 0.35)	(66.1 ± 2.3)	(10.69 ± 0.36)
70	1.11	14.53	66.1	10.66
/0	(1.10 ± 0.01)	(14.76 ± 0.28)	(63.7 ± 2.3)	(10.45 ± 0.53)
75	1.11	14.89	62.4	10.31
15	(1.09 ± 0.01)	(14.87 ± 0.11)	(63.7 ± 2.3)	(10.31 ± 0.25)

^{*a*}The best values are given, followed by the averages and standard derivations in parentheses, calculated from at least eight devices.

Fig. S11 Top-view SEM images of (a) RT-casting and (b,c) hot-casing processed CsPbI₂Br films with substrate temperatures of (b) 55 °C and (c) 75 °C. All the samples underwent post-annealing at 340 °C for 10 min.

Fig. S12 XRD patterns of RT-casting and hot-casting processed $CsPbI_2Br$ films with substrate temperatures of 55 °C and 75 °C. All the samples underwent post-annealing at 340 °C for 10 min.

9. Optimization of post-annealing temperatures

Fig. S13 J-V characteristics of CsPbI₂Br-based PSCs fabricated by hot-casting method with subsequent post-annealing at different temperatures. The substrate temperature was kept at 55 °C.

Table S3. Photovoltaic performance of the CsPbI₂Br-based PSCs fabricated by hotcasting method with subsequent post-annealing at different temperatures. The substrate temperature was kept at 55 °C.

Substrate temp.	$V_{\rm oc}{}^a$	$J_{ m sc}{}^a$	FF ^a	PCE ^a	
(°C)	(V)	$(mA cm^{-2})$	(%)	(%)	
100	No Efficiency				
110	1.04	15.21	62.8	9.93	
110	(1.01 ± 0.04)	(14.64 ± 0.45)	(56.8 ± 4.4)	(8.56 ± 1.10)	
120	1.17	15.04	71.0	12.45	
120	(1.12 ± 0.03)	(14.88 ± 0.59)	(69.4 ± 1.8)	(11.60 ± 0.71)	
120	1.16	15.21	67.9	11.98	
150	(1.15 ± 0.01)	(15.24 ± 0.44)	(67.2 ± 3.1)	(11.79 ± 0.36)	
140	1.16	15.04	72.2	12.58	
140	(1.18 ± 0.01)	(15.14 ± 0.39)	(69.2 ± 1.9)	(12.33 ± 0.15)	
150	1.19	15.58	70.0	13.35	
150	(1.18 ± 0.01)	(15.67 ± 0.10)	(69.9 ± 2.0)	(12.97 ± 0.33)	
160	1.16	15.85	68.3	12.56	
100	(1.18 ± 0.01)	(15.55 ± 0.22)	(66.3 ± 1.7)	(12.13 ± 0.35)	
170	1.19	15.07	74.1	13.29	
170	(1.18 ± 0.01)	(15.07 ± 0.08)	(71.6 ± 1.5)	(12.79 ± 0.34)	
190	1.19	15.66	74.1	13.80	
100	(1.17 ± 0.02)	(15.58 ± 0.15)	(72.4 ± 1.4)	(13.23 ± 0.56)	
200	1.16	15.32	70.0	12.34	
200	(1.15 ± 0.01)	(15.28 ± 0.08)	(69.6 ± 2.2)	(12.20 ± 0.24)	

^{*a*}The best values are given, followed by the averages and standard derivations in parentheses, calculated from at least eight devices.

Fig. S14 Top-view SEM images of hot-casting processed CsPbI₂Br films with subsequent post-annealing at (a)100 °C, (b) 120 °C, (c) 140 °C, (d) 160 °C, (e) 180 °C and (f) 200 °C. The substrate temperature was kept at 55 °C.

Fig. S15 XRD patterns of hot-casting processed CsPbI₂Br films with subsequent postannealing at (a)100 °C, (b) 120 °C, (c) 140 °C, (d) 160 °C, (e) 180 °C and (f) 200 °C. The substrate temperature was kept at 55 °C.

10. J-V curves measured under different scan rates

Fig. S16 *J-V* characteristics, measured under different scan rates, of CsPbI₂Br-based PSCs fabricated by hot-casting method (substrate temperature was kept at 55 °C) with subsequent post-annealing at (a) 120 °C and (b) 180 °C.

11. J-V curves measured under different scan directions

Fig. S17 *J-V* curves, measured in the forward and reverse scan directions, of the CsPbI₂Br-based PSCs fabricated by (a) conventional RT-casting method and (b,c) hot-casting method (substrate temperature was kept at 55 °C) with subsequent post-annealing at (b) 180 °C and (c) 120 °C for the perovskite films.

12. Thermal stability tests of CsPbI₂Br and CH₃NH₃PbI₃ PSCs

Fig. S18 Long-term PCE stability of the PSCs based on hot-casting processed CsPbI₂Br and traditional organic-inorganic hybrid perovskite CH₃NH₃PbI₃, which were placed on a hot plate at 100 °C in a N₂-filled glove box with H₂O and O₂ levels below 1 ppm. The device structure of CH₃NH₃PbI₃ PSCs is similar to that of CsPbI₂Br PSCs, and the CH₃NH₃PbI₃ perovskite layer was made by one-step anti-solvent method.

13. References

- Z. J. Shi, J. Guo, Y. H. Chen, Q. Li, Y. F. Pan, H. J. Zhang, Y. D. Xia and W. Huang, *Adv. Mater.*, 2017, **29**, 1605005.
- 2 W. S. Yang, B. W. Park, E. H. Jung, N. J. Jeon, Y. C. Kim, D. U. Lee, S. S. Shin, J. Seo, E. K. Kim, J. H. Noh and S. I. Seok, *Science*, 2017, 356, 1376-1379.
- 3 D. Bai, H. Bian, Z. Jin, H. Wang, L. Meng, Q. Wang and S. Liu, *Nano Energy*, 2018, 52, 408-415.
- 4 A. Dualeh, N. Tétreault, T. Moehl, P. Gao, M. K. Nazeeruddin and M. Grätzel, *Adv. Funct. Mater.*, 2014, **24**, 3250-3258.
- 5 T. Su, X. Li, Y. Zhang, F. Zhang and Z. Sheng, *Phys. Chem. Chem. Phys.*, 2017, **19**, 13147-13152.