Low-temperature-processed inorganic perovskite solar cells via solvent engineering with enhanced mass transport

Huachao Zai,^{a,b} Deliang Zhang,^a Liang Li,^c Cheng Zhu,^a Sai Ma,^a Yizhou Zhao,^a Zhiguo Zhao,^d Changfeng Chen,^b Huanping Zhou,^c Yujing Li^{*a} and Qi Chen^{*a}

- a. School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, P.R. China
- b. Department of Materials Science and Engineering, College of Science, China University of Petroleum, Beijing 102249, P.R. China
- c. Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, P.R. China
- d. Clean Energy Research Institute, China Huaneng Group, Beijing 102209, P.R. China

Experimental section

Materials. All reagents were used as received without further purification, including isopropanol (IPA, 99.99%, Sigma-Aldrich), SnO₂ (15% in H₂O colloidal dispersion liquid, Alfa Aesar), PbI₂ (99.999%, Sigma-Aldrich), PbBr₂ (99.999%, Sigma-Aldrich), CsI (99.999%, Sigma-Aldrich), N,N-dimethylformamide (DMF, 99.99%, Sigma-Aldrich), Dimethyl sulfoxide (DMSO, 99.9%, Sigma-Aldrich), chlorobenzene (CB, 99.9%, Sigma-Aldrich), PTAA (\geq 99.5%, Xi'an Polymer Light Technology Corp.), bis(trifluoromethane)sulfonimide lithium salt (Li-TFSI, 99.95%, Sigma-Aldrich), 4-tert-butylpyridine (tBP, 99.9%, Sigma-Aldrich), acetonitrile (ACN, 99.9%, Sigma-Aldrich) and ITO substrates.

Fabrication of solar cells. The indium tin oxide (ITO) coated glass was sequentially cleaned using detergent, ultra-pure water, and isopropanol. After 30 minutes of UV-O₃ treatments, the SnO₂ electron transport layers (ETLs) were spin-coated on ITO substrates from the SnO₂ colloidal solutions, and annealed on a hot plate at the displayed temperature of 150 °C for 30 min in ambient air. The CsPbI₂Br precursor solution was prepared in a mixed solvent of DMF and DMSO with different volume ratios. The perovskite films were deposited onto the SnO₂ substrates with one-step spin coating procedures. The step was 3000 rpm for 30~150 s. The substrate was then immediately transferred on a hot plate and heated at 100 °C for 5 min. After cooling down to room temperature, the hole-transport layer was subsequently deposited on top of the perovskite film by spin coating at 3000 rpm for 30 s using a CB solution which contained PTAA, tBP and Li-TFSI. All operations were conducted in ambient atmosphere (temperature: 20 °C, relative humidity: 10%). Finally, 100 nm Au contact was deposited on top of Spiro-OMeTAD by thermal evaporation.

Characterizations. The thickness of films was measured with BRUKER DektakXT step profiler. Scanning electron microscope (SEM) images were measured using Hitachi S4800 field-emission scanning electron microscopy. X-ray diffraction (XRD) patterns were recorded by Rigaku D/Max 2,200 with Cu Kα as the X-ray source. The UV-visible absorption spectra were measured by Hitachi UH4150 spectrophotometer. PL spectra and TRPL spectra were obtained by FLS980 (Edinburgh Instruments Ltd) with an excitation at 510 nm. The J-V measurement was performed via the solar simulator (SS-F5-3A, Enlitech) along with AM 1.5G spectra whose intensity was calibrated by the certified standard silicon solar cell (SRC-2020, Enlitech) at 100mW/cm². Light intensity was calibrated with a National Institute of Metrology (China) calibrated KG5-filtered Si reference cell. The scanning speed of all J-V curves is 0.1 V/s. The effective area of cells were 0.1003 cm² and 1.0 cm² defined by masks for all the photovoltaic devices discussed in this work. The external quantum efficiency (EQE) data were obtained by using the solar-cell spectral-response measurement system (QE-R, Enlitech). A calibrated silicon diode with a known spectral response was used as a reference. The absorption and transmission spectra were measured by Hitachi UH4150 spectrophotometer.

Figure S1. Optical image of perovskite films fabricated with different DMF: DMSO ratios (0.4 M).

Figure S2. PV metrics for devices (~20 cells for each condition) fabricated with different DMF: DMSO ratios (0.4 M).

Figure S3. Optical image of perovskite films fabricated with different DMF: DMSO ratios (0.8 M).

Samples		Average (nm)				
4:1	303.63	303.86	308.10	304.80	306.70	305.418
3:1	302.76	296.08	309.85	308.20	307.20	304.818
2:1	303.17	296.38	306.03	289.61	308.40	300.718
1:1	266.99	297.28	291.61	303.69	285.74	289.062
1:2	231.81	285.27	276.68	278.12	287.57	271.890
0:1	224.84	209.10	223.42	223.18	213.42	218.792

Table S1. Thicknesses of the CsPbI₂Br films fabricated with different DMF: DMSO ratios (0.8 M).

Figure S4. FWHM of (100) and (200) peaks for perovskite films fabricated with different DMF: DMSO ratios.

Figure S5. XRD pattern of the as spin-coated film fabricated with DMF/DMSO=2/1 before annealing.

Sample	τ_1 (ns)	τ_2 (ns)	A ₁	A ₂	$\tau_{ave} \left(ns \right)$
4:1	4.58	10.51	0.93	0.07	4.98
3:1	5.15	11.37	0.90	0.10	5.74
2:1	6.63	12.10	0.86	0.14	7.40
1:1	5.85	11.45	0.87	0.13	6.58
1:2	3.20	6.37	0.81	0.19	3.82
0:1	2.38	4.79	0.52	0.48	3.53

Table S2. Carrier lifetimes for the CsPbI₂Br films fabricated with different DMF: DMSO ratios.

Table S3. Urbach energies for the CsPbI₂Br films fabricated with different DMF: DMSO ratios.

Sample	4:1	3:1	2:1	1:1	1:2	0:1
E _u (meV)	148.87	92.96	80.89	85.52	154.08	157.47

Figure S6. PV metrics for devices (~20 cells for each condition) fabricated with different DMF: DMSO ratios (0.8 M).

Figure S7. Optical image of perovskite films fabricated with different spin-coating time.

Br L	i de la companya de l	Cs L	Pb M
2 µm	2 μm	2 µm	2 µm

Figure S8. EDX mapping images for a perovskite film fabricated with 120 s.

Figure S9. FWHM of (100) and (200) peaks for perovskite films fabricated with different spincoating time.

Samples		Average (nm)				
30 s	289.76	301.53	308.47	309.46	291.53	300.150
45 s	296.80	297.53	309.82	291.57	308.58	300.860
60 s	301.52	300.56	307.53	290.26	306.26	301.226
90 s	303.17	296.38	306.03	289.61	308.40	300.718
120 s	304.56	297.52	304.53	293.47	308.40	301.696
150 s	297.19	303.55	297.68	305.43	304.30	301.630

Table S4. Thicknesses of the CsPbI₂Br films fabricated with different spin-coating time.

Table S5. Carrier lifetimes for the CsPbI₂Br films fabricated with different spin-coating time.

Sample	τ_1 (ns)	τ_2 (ns)	A ₁	A ₂	$\tau_{ave} \left(ns \right)$
30 s	2.47	13.38	0.99	0.01	2.61
45 s	2.83	5.71	0.89	0.11	3.15
60 s	3.92	6.81	0.67	0.33	4.86
90 s	6.63	12.10	0.86	0.14	7.40
120 s	6.79	14.17	0.65	0.35	9.41

150 s	6.84	12.83	0.68	0.32	8.76
	1				1

Table S6. Urbach energies for the CsPbI₂Br films fabricated with different spin-coating time.

Sample	30 s	45 s	60 s	90 s	120 s	150 s
E _u (meV)	161.99	160.34	112.28	80.89	61.55	73.28

Figure S10. PV metrics for devices (~20 cells for each condition) fabricated with different different spin-coating time.

Figure S11. UV-vis absorption spectrum of the perovskite film fabricated with optimal condition, with an inset showing the Tauc plot.

Figure S12. Cross-sectional SEM image of the optimal device.

Figure S13. Comparison of (a) PCE and (b) long-term stability for inorganic perovskite solar cells with PCE over 10% via low-temperature process.¹⁻⁷

Figure S14. XRD patterns evolution of the CsPbI₂Br film heated on a 100 °C hotplate in a nitrogen filled glove box.

Figure S15. UV-vis spectra evolution of the $CsPbI_2Br$ film heated on a 100 °C hotplate in in a nitrogen filled glove box.

Figure S16. J-V curves for a device measured by forward and reverse scans with a 0.1 cm² active area before and after 12 h under continuous light soaking.

Figure S17. PCE for devices (~20 cells for each condition) fabricated with different spin-coating time and annealing temperature. (0.8 M)

References:

1. C. F. J. Lau, M. Zhang, X. Deng, J. Zheng, J. Bing, Q. Ma, J. Kim, L. Hu, M. A. Green, S. Huang and A. Ho-Baillie, *ACS Energy Lett.*, 2017, **2**, 2319-2325.

2. Q. Wang, X. Zheng, Y. Deng, J. Zhao, Z. Chen and J. Huang, Joule, 2017, 1, 371-382.

3. T. Zhang, M. I. Dar, G. Li, F. Xu, N. Guo, M. Grätzel and Y. Zhao, *Science Advances*, 2017, **3**, e1700841.

4. Y. Hu, F. Bai, X. Liu, Q. Ji, X. Miao, T. Qiu and S. Zhang, *ACS Energy Lett.*, 2017, **2**, 2219-2227.

5. Y. Wang, T. Zhang, F. Xu, Y. Li and Y. Zhao, Solar RRL, 2018, 2, 1700180.

6. C. Liu, W. Li, C. Zhang, Y. Ma, J. Fan and Y. Mai, J. Am. Chem. Soc., 2018, 140, 3825-3828.

7. Y. Jiang, J. Yuan, Y. Ni, J. Yang, Y. Wang, T. Jiu, M. Yuan and J. Chen, *Joule*, 2018, **2**, 1356-1368.