Electronic Supplementary Information (ESI)

Highly Robust and Stable Graphene-Encapsulated Cu-Grid Hybrid Transparent Electrode Demonstrating Superior Performance in Organic Solar Cells

Gyujeong Jeong,^{‡a} Seungon Jung,^{‡a} Yunseong Choi,^a Junghyun Lee,^a Jihyung Seo,^a Dong Suk Kim,^{*b} and Hyesung Park^{*a}

^aDepartment of Energy Engineering, School of Energy and Chemical Engineering, Low Dimensional Carbon Materials Center, Perovtronics Research Center, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.

^bKIER-UNIST Advanced Center for Energy, Korea Institute of Energy Research (KIER), Ulsan 44919, South Korea.

‡G. Jeong and S. Jung contributed equally to this work.

*E-mail: hspark@unist.ac.kr (H. Park).; kimds@kier.re.kr (D. S. Kim).

Table of Contents

1. Supplementary figures and tables

- **Table S1** Optical transmittance and sheet resistance of the Cu grid and Cu grid/graphene
- Fig. S1 Stability of the Cu grid and Cu grid/graphene electrode in basic condition.
- Fig. S2 Chemical composition analysis of the Cu film and Cu/graphene film
- Fig. S3 EDS spectra of the Cu grid and Cu grid/graphene
- Fig. S4 UPS spectra of the Cu film and Cu grid/graphene
- Table S2 Comparison of the OSC performances based on metal transparent electrodes
- Fig. S5 Surface morphology characterization of Cu grid/graphene/PEDOT:PSS
- Fig. S6 Surface morphology characterization of Cu film and Cu/graphene film.
- **Fig. S7** *J*–*V* characteristic of the PTB7-Th:PC₇₁BM-based OSCs using Cu grid/PH1000 electrode

2. References

Cu grid	Transmittance [%]	$R_{sh}\left[\Omega/sq\right]$
D100W3	89.7	6.02
D100W5	87.2	4.37
D100W10	76.7	2.13
D200W3	95.8	9.78
D200W5	93.6	6.19
D200W10	87.5	5.08
D300W3	97.3	10.8
D300W5	95.4	7.40
D300W10	91.0	5.76
D100W3/GR	87.2	4.45
D200W3/GR	93.5	8.54
D300W3/GR	94.9	9.60

 Table S1. Optical transmittance and sheet resistance of the Cu grid and Cu grid/graphene with various geometry.

Fig. S1. Change in sheet resistance of the pristine Cu grid and Cu grid/graphene exposed to basic condition of 0.5 M sodium cholate solution.

Fig. S2. Chemical composition analysis of the Cu film and Cu/graphene film. (a) XPS spectra of the pristine Cu films and annealed Cu films at 240 °C and 50% relative humidity for 10 min. (b) XPS spectra of the pristine Cu/graphene film and annealed the Cu/graphene film at 240 °C and 50% relative humidity for 10 min.

Fig. S3. EDS spectra of the Cu grid and Cu grid/graphene. (a) Pristine Cu grid. (b) Annealed Cu grid and (c) annealed Cu grid/graphene at 240 °C for 10 min in ambient air condition.

Fig. S4. (a) UPS spectra of the Cu film and Cu grid/graphene. (b) Secondary electron cut-off region of the UPS spectra.

Transparent electrode	Transmittance	Width, Spacing	R_{sh} [Ω/sq]	PCE [%]	Ref
Ag grid/conducting polymer	85%	3 μm, 130 μm (Hexagon)	6.1	1.36	1
Au mesh	84%	70 nm, 700 nm × 10 μm (Rectangle)	24	1.96	2
Ag mesh	78%	70 nm, 700 nm × 10 μm (Rectangle)	23	2.00	2
Cu mesh	83.5%	3.0 µm (Circle)	28.7	2.04	3
Cu mesh	83%	70 nm, 700 nm × 10 μm (Rectangle)	28	2.06	2
Conducting polymer/Ag grid	93.1%	70 μm, 1.1 mm (Grid bar)	8.7	2.8	4
Ag mesh	-	65–85 μm, 300 nm (Square)	-	2.82	5
Ag grid/conducting polymer	85%	5 μm , 50 μm (Square)	2.8	3.21	6
Ag grid- graphene/conducting polymer	93%	2 μm, 200 μm (Square)	55	3.8	7
Au grid-graphene	89%	4.5 μm, 150 μm (Square)	97	4.38	8
Ag mesh	88.1%	150 nm, 1.6 μm (Square)	7.5	7.25	9
Ag mesh/conducting polymer	-	10 μm, 212 μm (Square)	16	7.8	10
Ag mesh	86%	5 μm, 45 μm (Square)	17	8.18	11
Cu grid/graphene	94.9%	3 μm, 300 μm (Hexagon)	9.60	8.5	Our work

Table S2. Comparison of the OSC performances based on metal transparent electrodes.

Fig. S5. Surface morphology characterization of Cu grid/graphene/PEDOT:PSS. (a) The AFM height image and (b) AFM phase image of Cu grid/graphene/PEDOT:PSS morphology.

Fig. S6. AFM images of (a) Cu film and (b) Cu film/graphene. Comparison of RMS roughness Cu film and Cu film/graphene.

Fig. S7. J-V characteristic of the PTB7-Th:PC₇₁BM-based OSCs using Cu grid/PH1000 electrode.

REFERENCES

- Y. Li, L. Mao, Y. Gao, P. Zhang, C. Li, C. Ma, Y. Tu, Z. Cui, L. Chen, *Sol. Energy Mater.* Sol. Cells, 2013, **113**, 85–89.
- 2 M. G. Kang, M. S. Kim, J. S. Kim, L. J. Guo, Adv. Mater., 2008, 20, 4408–4413.
- W. Zhou, J. Chen, Y. Li, D. Wang, J. Chen, X. Feng, Z. Huang, R. Liu, X. Lin, H. Zhang,
 B. Mi and Y. Ma, ACS Appl. Mater. Interfaces, 2016, 8, 11122–11127.
- 4 Y. H. Kim, L. Müller-Meskamp, K. Leo, Adv. Energy Mater., 2015, 5, 1401822.
- 5 J. van de Groep, D. Gupta, M. A. Verschuuren, M. M. Wienk, R. A. Janssen, A. Polman, *Sci. Rep.*, 2015, **5**, 11414.
- 6 J. Zou, H.-L. Yip, S. K. Hau, A. K. Y. Jen, Appl. Phys. Lett., 2010, 96, 203301.
- 7 M. J. Cha, S. M. Kim, S. J. Kang, J. H. Seo, B. Walker, RSC Adv., 2015, 5, 65646–65650.
- 8 H. Park, D. Y. Lee, Y. H. Kim, J. K. Kim, J. H. Lee, J. H. Park, T. W. Lee, J. H. Cho, *ACS Appl. Mater. Inter.*, 2014, **6**, 12380–12387.
- 9 M. Song, H.-J. Kim, C. S. Kim, J.-H. Jeong, C. Cho, J.-Y. Lee, S.-H. Jin, D.-G. Choi, D.-H. Kim, J. Mater. Chem. A, 2015, 3, 65–70.
- 10 J. Czolk, D. Landerer, M. Koppitz, D. Nass, A. Colsmann, Adv. Mater. Technol., 2016, 1, 1600184.
- 11 Z. Jiang, K. Fukuda, X. Xu, S. Park, D. Inoue, H. Jin, M. Saito, I. Osaka, K. Takimiya, T. Someya, *Adv. Mater.*, 2018, 30, 1707526.