Supporting Information

Growth of BiVO₄ Nanoparticles on WO₃ Porous Scaffold: Improved Water-Splitting by High Band-Edge Light Harvesting

Kiwon Kim^a, Sung Kyung Nam, Jong Hyeok Park^b and Jun Hyuk Moon^{*,a}

^aDepartment of Chemical and Biomolecular Engineering, Sogang University 35 Baekbum-ro Mapo-gu, Seoul, 04107, Republic of Korea

^bDepartment of Chemical and Biomolecular Engineering, Yonsei University 50 Yonsei-ro Seodaemun-gu, Seoul, 03722, Republic of Korea

*Corresponding author, E-mail: junhyuk@sogang.ac.kr

Electrode	J _{H2O} at 1.23V _{RHE}	IPCE (%) at 500nm	Reference
	[initionin]	ut coonin	
WO ₃ /BiVO ₄ IO	1.3*	5	1
WO ₃ /BiVO ₄ porous structure	4.7*	3	2
WO ₃ /W:BiVO ₄ /BiVO ₄	2.6	-	3
WO ₃ /BiVO ₄ IO	5.1*	5	4
WO ₃ /W:BiVO ₄ NWs	3.1	6	5
WO ₃ /(W,Mo)-BiVO ₄ Nanohelix	5.3*	8	6
WO ₃ /BiVO ₄ NRs	3.25*	5	7
WO ₃ /M:BiVO ₄ film	1.7	5	8
WO ₃ /SnO ₂ /BiVO ₄ film	2.5	3	9
SnO ₂ /WO ₃ /BiVO ₄ film	1.8	2	10
WO ₃ /BiVO ₄ film	1.5	7.5	11
BiVO4/WO3 NRs	1.2	2	12

Table S1. Water oxidation photocurrent density and onset potential of various $WO_3/BiVO_4$ photoanodes.

* The value in parentheses is the water splitting current of the electrode coated with the oxygen evolution catalyst.

Figure S1. (a) Mott-Schottky plots of WO₃ and BiVO₄ films. (b) Mott-Schottky plots of BiVO₄ before and after Mo doping. Mott-Schottky measurements were conducted using impedance spectroscopy in a dark environment in 0.5 M Na₂SO₄ solution at a frequency of 1 kHz. We compared the carrier densities before and after doping, 2.33 x 10^{21} cm⁻³ for Mo-doped BiVO₄ and 7.33 x 10^{19} cm⁻³ for pristine BiVO₄

Figure S2. SEM images of WO₃ porous structure with polymer nanosphere-infiltrated BiVO₄ precursor after annealing with different temperature (a) 70 °C, (b) 340 °C and (c) 450 °C.

Figure S3. Particle radius distribution of $BiVO_4$ NP coated on the WO₃ structure. The distribution was obtained from measuring diameters of 200 particles.

Figure S4. SEM images of BiVO₄ nanoparticles prepared by various precursor concentrations (a-c) and thicknesses (d-f).

Figure S5. Current-potential (J–V) curves of $BiVO_4$ NP/WO₃ photoanodes a) with various precursor concentrations of $BiVO_4$ and b) with various photoanode thicknesses. The coating thickness of $BiVO_4$ layer was not optimized.

Figure S6. XRD pattern of the Mo:BiVO₄ NP/WO₃. The typical (121) and (040) planes of scheelite-monoclinic BiVO₄ were observed, and the (002), (020), (200) and (220) planes of monoclinic WO₃ were also observed.

Figure S7. BiVO₄ NP/WO₃ TEM images with various magnifications.

Figure S8. (a) SEM image and (b) high magnification SEM image of $BiVO_4$ shell / WO_3 photoanode. The scale bars are (a) 1 μ m and (b) 200 μ m.

Figure S9. a) Diffuse-reflectance spectra, b) diffuse-transmittance spectra and c) Tauc plots using the Kubelka-Munk function of the BiVO₄ NP/WO₃ and BiVO₄ shell/WO₃ structures. The optical bandgap energy was measured using the Tauc relation, $(ahv)^n = A(hv - E_g)$, where *a* denotes the absorption coefficient, *hv* is the photon energy, A is a constant, E_g is the bandgap, and the exponent *n* depends on the type of transition (*n* = 2 for direct bandgap). The Kubelka-Munk function, F(R), was employed to obtain the absorption coefficient, *a*; the Kubelka-Munk equation is $a = (1-R)^2/2R$, where R corresponds to the diffuse reflectance.

Figure S10. Details of the calculation of the separation efficiency is following.

a) Global tilt spectra irradiance, E.

b) Photon flux, N_p, calculated by the irradiance/energy of a photon: $E/(hc/\lambda) = E \times \lambda \times (5.04 \times 10^{15})$, where h is Plank's constant (4.13 × 10⁻¹⁵ eV s⁻¹), c is the velocity of light (3 × 10⁸ m s⁻¹), and λ is the wavelength.

c) LHE of BiVO₄/WO₃ photoanodes

d) Charge density of BiVO₄/WO₃ photoanodes calculated by N_p × e × LHE, where e is the elementary charge (1.6022 × 10⁻¹⁹ C), and $J_{\text{max}} \times \eta_{\text{abs}}$ represents the integration of the charge density.

The product of $J_{\text{max}} \times \eta_{\text{abs}}$ was obtained from the integration of the charge density, which is N_p \times e \times LHE, where N_p is the photon flux of the AM 1.5G spectrum, and e is the elementary charge (1.6022 \times 10⁻¹⁹ C).

Figure S11. Nyquist plot of BiVO₄ NP/WO₃ and BiVO₄ shell/WO₃. This experiment was also analyzed under 1 sun illumination and at 0.6 V_{RHE}. We compared the charge transfer resistance (R_{ct}) through an equivalent circuit. The resistances of BiVO₄ NP / WO₃ and BiVO₄ shell / WO₃ are 1297 Ω and 1951 Ω , respectively.

Figure S12. TEM elemental mapping of Fe and Ni for the FeOOH/NiOOH/BiVO₄ NP/WO₃.

Figure S13. Photocurrent-voltage curves of BiVO₄ NP/WO₃ and FeOOH/NiOOH/BiVO₄ NP/WO₃ photoanodes without illumination.

Figure S14. Independent runs of the FeOOH/NiOOH/BiVO₄ NP/WO₃ photoanode at 1.23 V_{RHE} under AM 1.5G illumination.

Reference

- 1. H. Zhang, W. Zhou, Y. Yang and C. Cheng, *Small*, 2017, **13**, 1603840.
- 2. S. S. Kalanur, I.-H. Yoo, J. Park and H. Seo, J. Mater. Chem. A, 2017, 5, 1455-1461.
- J. Choi, P. Sudhagar, J. H. Kim, J. Kwon, J. Kim, C. Terashima, A. Fujishima, T. Song and U. Paik, *Phys. Chem. Chem. Phys.*, 2017, 19, 4648-4655.
- M. Ma, X. Shi, K. Zhang, S. Kwon, P. Li, J. K. Kim, T. T. Phu, G.-R. Yi and J. H. Park, *Nanoscale*, 2016, 8, 3474-3481.
- P. M. Rao, L. Cai, C. Liu, I. S. Cho, C. H. Lee, J. M. Weisse, P. Yang and X. Zheng, *Nano Lett.*, 2014, 14, 1099-1105.
- X. Shi, I. Y. Choi, K. Zhang, J. Kwon, D. Y. Kim, J. K. Lee, S. H. Oh, J. K. Kim and J. H. Park, *Nat. Commun.*, 2014, 5, 4775.
- Y. Pihosh, I. Turkevych, K. Mawatari, T. Asai, T. Hisatomi, J. Uemura, M. Tosa, K. Shimamura, J. Kubota and K. Domen, *Small*, 2014, 10, 3692-3699.
- K. Zhang, X.-J. Shi, J. K. Kim and J. H. Park, *Phys. Chem. Chem. Phys.*, 2012, 14, 11119-11124.
- 9. R. Saito, Y. Miseki and K. Sayama, Chem. Commun., 2012, 48, 3833-3835.
- S. n. Murcia-López, C. Fàbrega, D. n. Monllor-Satoca, M. D. Hernández-Alonso, G. n. Penelas-Pérez, A. Morata, J. R. Morante and T. Andreu, *ACS Appl. Mater. Inter.*, 2016, 8, 4076-4085.
- 11. S. J. Hong, S. Lee, J. S. Jang and J. S. Lee, *Energy Environ. Sci.*, 2011, 4, 1781-1787.
- 12. J. Su, L. Guo, N. Bao and C. A. Grimes, *Nano Lett.*, 2011, **11**, 1928-1933.