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Table S1. Water oxidation photocurrent density and onset potential of various WO3/BiVO4 

photoanodes. 

Electrode
JH2O at 1.23VRHE

[mA/cm2]

IPCE (%)

at 500nm
Reference

WO3/BiVO4 IO
1.3* 5 1

WO3/BiVO4 porous structure 4.7* 3 2

WO3/W:BiVO4/BiVO4
2.6 - 3

WO3/BiVO4 IO
5.1* 5 4

WO3/W:BiVO4
NWs

3.1 6 5

WO3/(W,Mo)-BiVO4 Nanohelix 5.3* 8 6

WO3/BiVO4 NRs 3.25* 5 7

WO3/M:BiVO4 film
1.7 5 8

WO3/SnO2/BiVO4 film
2.5 3 9

SnO2/WO3/BiVO4 film
1.8 2 10

WO3/BiVO4 film
1.5 7.5 11

BiVO4/WO3 NRs 1.2 2 12

* The value in parentheses is the water splitting current of the electrode coated with the oxygen evolution catalyst.
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Figure S1. (a) Mott-Schottky plots of WO3 and BiVO4 films. (b) Mott-Schottky plots of BiVO4 

before and after Mo doping. Mott-Schottky measurements were conducted using impedance 

spectroscopy in a dark environment in 0.5 M Na2SO4 solution at a frequency of 1 kHz. We 

compared the carrier densities before and after doping, 2.33 x 1021 cm-3 for Mo-doped BiVO4 

and 7.33 x 1019 cm-3 for pristine BiVO4
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Figure S2. SEM images of WO3 porous structure with polymer nanosphere-infiltrated BiVO4 

precursor after annealing with different temperature (a) 70 oC, (b) 340 oC and (c) 450 oC.
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Figure S3. Particle radius distribution of BiVO4 NP coated on the WO3 structure. The 

distribution was obtained from measuring diameters of 200 particles. 
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Figure S4. SEM images of BiVO4 nanoparticles prepared by various precursor concentrations 

(a-c) and thicknesses (d-f).
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Figure S5. Current-potential (J–V) curves of BiVO4 NP/WO3 photoanodes a) with various 

precursor concentrations of BiVO4 and b) with various photoanode thicknesses. The coating 

thickness of BiVO4 layer was not optimized.
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Figure S6. XRD pattern of the Mo:BiVO4 NP/WO3. The typical (121) and (040) planes of 

scheelite-monoclinic BiVO4 were observed, and the (002), (020), (200) and (220) planes of 

monoclinic WO3 were also observed.
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Figure S7. BiVO4 NP/WO3 TEM images with various magnifications.
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Figure S8. (a) SEM image and (b) high magnification SEM image of BiVO4 shell / WO3 

photoanode. The scale bars are (a) 1μm and (b) 200μm.
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Figure S9. a) Diffuse-reflectance spectra, b) diffuse-transmittance spectra and c) Tauc plots 

using the Kubelka-Munk function of the BiVO4 NP/WO3 and BiVO4 shell/WO3 structures. The 

optical bandgap energy was measured using the Tauc relation, (ahν)n = A(hν – Eg), where a 

denotes the absorption coefficient, hν is the photon energy, A is a constant, Eg is the bandgap, 

and the exponent n depends on the type of transition (n = 2 for direct bandgap). The Kubelka-

Munk function, F(R), was employed to obtain the absorption coefficient, a; the Kubelka-Munk 

equation is a = (1-R)2/2R, where R corresponds to the diffuse reflectance.
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Figure S10. Details of the calculation of the separation efficiency is following.

a) Global tilt spectra irradiance, E.

b) Photon flux, Np, calculated by the irradiance/energy of a photon: E/(hc/λ) = E × λ × (5.04 × 
1015), where h is Plank’s constant (4.13 × 10-15 eV s-1), c is the velocity of light (3 × 108 m s-

1), and λ is the wavelength.

c) LHE of BiVO4/WO3 photoanodes

d) Charge density of BiVO4/WO3 photoanodes calculated by Np × e × LHE, where e is the 
elementary charge (1.6022 × 10-19 C), and Jmax × ηabs represents the integration of the charge 
density. 

The product of Jmax × ηabs was obtained from the integration of the charge density, which is Np 
× e × LHE, where Np is the photon flux of the AM 1.5G spectrum, and e is the elementary 
charge (1.6022 × 10-19 C).
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Figure S11. Nyquist plot of BiVO4 NP/WO3 and BiVO4 shell/WO3. This experiment was also 

analyzed under 1 sun illumination and at 0.6 VRHE. We compared the charge transfer resistance 

(Rct) through an equivalent circuit. The resistances of BiVO4 NP / WO3 and BiVO4 shell / WO3 

are 1297 Ω and 1951 Ω, respectively.
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Figure S12. TEM elemental mapping of Fe and Ni for the FeOOH/NiOOH/BiVO4 NP/WO3.
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Figure S13. Photocurrent-voltage curves of BiVO4 NP/WO3 and FeOOH/NiOOH/BiVO4 

NP/WO3 photoanodes without illumination.
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Figure S14. Independent runs of the FeOOH/NiOOH/BiVO4 NP/WO3 photoanode at 1.23 

VRHE under AM 1.5G illumination. 
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