Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2018

Supplementary information for

Enhanced efficiency and stability of perovskite solar cells by incorporating CdS and $Cd(SCN_2H_4)_2Cl_2$ into $CH_3NH_3PbI_3$ active layer

Liangxin Zhu, a,b Chong Chen, a,b Fumin Li,a,b Zhitao Shen,a,b Yujuan Weng,a,b Qingsong Huange*,

Mingtai Wangd*

^aHenan Key Laboratory of Photovoltaic Materials, Henan University, Kaifeng 475004, P.R.China,
 ^bSchool of Physics and Electronics, Henan University, Kaifeng 475004, P.R.China and
 ^cSchool of Chemical Engineering, Sichuan University, Chengdu 610065, P.R.China
 ^dInstitute of Applied Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences,
 Hefei, 230031, PR China

E-mail: chongchen@henu.edu.cn (C. Chen), qshuang@scu.edu.cn (Q. Huang), and mtwang@ipp.ac.cn (M. Wang).

1. First-principles calculations

Electronic structure calculations are performed with the density functional theory as implemented in the Vienna ab initio simulation package,^{1,2} employing projected augmented wave potentials to describe the atomic core electrons and a plane wave basis set with a kinetic energy cutoff of 450 eV to expand the Kohn–Sham electronic states. For the exchange and correlation functional, the generalized gradient approximation (GGA) in the Perdew–Burke–Ernzerhof (PBE) format was used.³

The bulk CH₃NH₃PbI₃ and CdCl{SC(NH₂)₂}₂ were optimized from experimental crystal structures.^{4,5} In particular, a tetragonal cell (a = b = 8.84 Å and c = 12.69 Å) of CH₃NH₃PbI₃ and an orthorhombic cell (a = 13.15 Å, b = 5.83 Å and c = 6.50 Å) of CdCl{SC(NH₂)₂}₂ have been used. In the structural optimization, the k-point meshes to sample the Brillouin zone were $5 \times 5 \times 3$ and $3 \times 5 \times 5$ generated by Monkhorst–Pack scheme⁶ for CH₃NH₃PbI₃ and CdCl{SC(NH₂)₂}₂, respectively. All atoms were allowed to relax until the atomic forces were smaller than 0.02 eV Å⁻¹, while the lattice constants were fixed to reduce computational cost. After structural optimization, the densities of states

E-mail: chongchen@henu.edu.cn (C. Chen), qshuang@scu.edu.cn (Q. Huang).

(Dr. Chong Chen and Dr. Qingsong Huang)

-

were calculated using more dense k-point grids with $9 \times 9 \times 7$ and $7 \times 9 \times 9$ for $CH_3NH_3PbI_3$ and $CdCl\{SC(NH_2)_2\}_2$, respectively.

The CH₃NH₃PbI₃/CdS interface was described by 8 atomic layers CH₃NH₃PbI₃ (001) contacted with 16 layers CdS (001), and a vacuum thickness of 15 Å was added along the z direction. A $6 \times 6 \times 1$ gamma centered k-point mesh was used to sample the Brillouin zone. The DFT-D3 method with Becke-Jonson damping was adopted to include van der Waals interactions.⁷ During structural optimization, all the atoms and the lattice constants were fully relaxed until the atomic forces are smaller than 0.05 eV Å⁻¹.

The binding energy of the interface system was calculated to assess the structural stability. Here, the binding energy $E_{\rm b}$ per area is defined as

$$E_b = [E(CdS) + E(CH_3NH_3PbI_3) - E(CH_3NH_3PbI_3/CdS)]/A,$$

where E(CdS), $E(CH_3NH_3PbI_3)$ and $E(CH_3NH_3PbI_3/CdS)$ are the total energies of the CdS film, the $CH_3NH_3PbI_3$ surface and the combined systems, respectively. A is the surface area of the supercell.

References:

- 1. G. Kresse, J. Hafner, *Phys. Rev. B* 1993, **47**, R558
- 2. G. Kresse, J. Furthmüller, Phys. Rev. B 1996, 54, 11169
- 3. J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865.
- 4. Y. Yamada, T. Yamada, L. Q. Phuong, N. Maruyama, H. Nishimura, A. Wakamiya, Y. Murata, Y. Kanemitsu, *J. Am. Chem. Soc.*, 2015, **137**, 10456.
- 5. C. Marcos, J. M. Alía, V. Adovasio, M. Prieto, S. García-Granda, Acta Cryst., 1998, C54, 1225.
- 6. H. J. Monkhorst, J. D. Pack, Phys. Rev. B: Solid State, 1976, 13, 5188.
- 7. S. Grimme, S. Ehrlich, L. Goerigk, J. Comp. Chem., 2011, 32, 1456.

2. Supplementary Figures

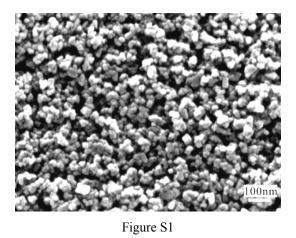


Fig. S1. Top-view SEM image of as-prepared FTO/cp-TiO₂/mp-TiO₂ film.

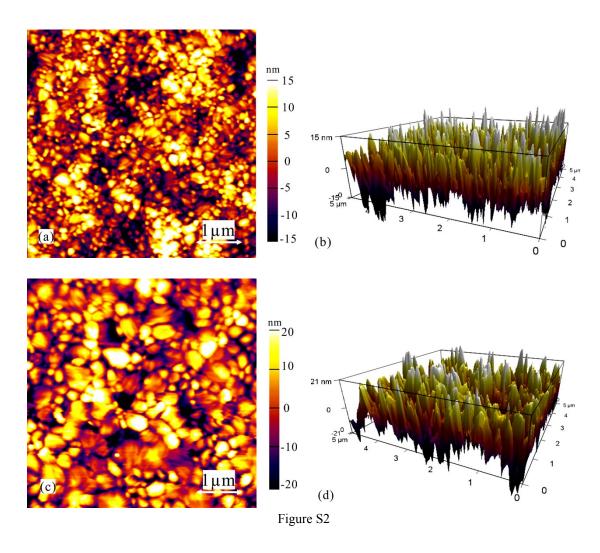


Fig. S2 SEM images of the capping layers on top of the (a) $FTO/cp-TiO_2/mp-TiO_2/CH_3NH_3PbI_3$ (a) and (b) $FTO/cp-TiO_2/mp-TiO_2/C:C:CH_3NH_3PbI_3$ films at 300, 000× magnification.

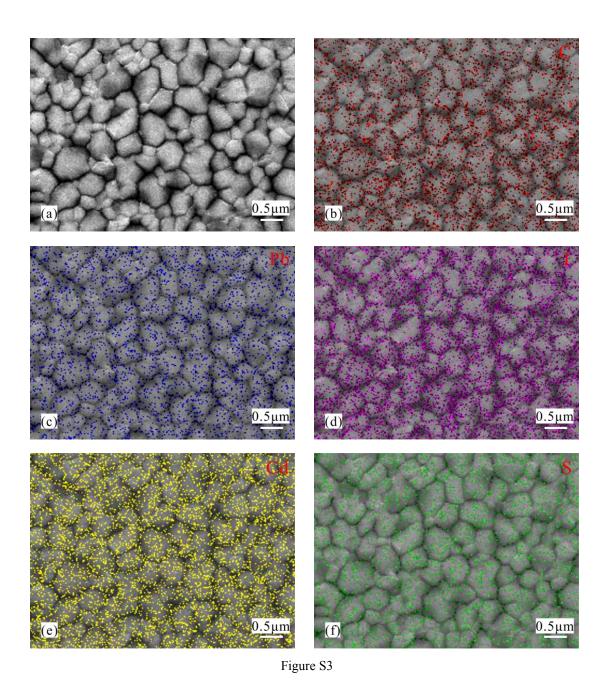


Fig. S3 Top-view (cross-sectional) SEM image and EDX spectrum of FTO/cp-TiO₂/mp-TiO₂/C:C:CH₃NH₃PbI₃ film (a), C element distribution (b), Pb element distribution (c), I element distribution (d), Cd element distribution (e), and S element distribution (f).

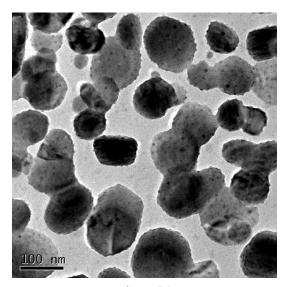


Figure S4

Fig. S4 (a) The low-magnification TEM image of C:C:CH₃NH₃PbI₃ nanoparticles after ultrasonic dispersion treatment. The small size CdS nanoparticles are clearly observed on the surface of large size CH₃NH₃PbI₃ crystals.

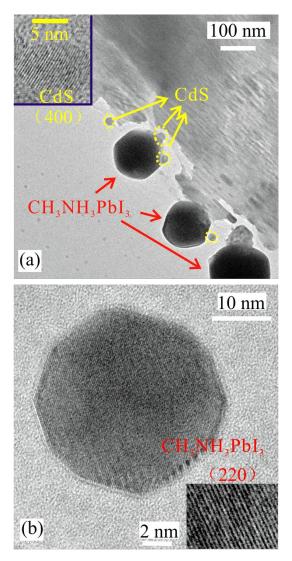


Figure S5

Fig. S5 (a) The TEM image of C:C:CH₃NH₃PbI₃ composite film and the inset is the HR-TEM image of one CdS nanoparticle. (b) The HR-TEM image of one single CH₃NH₃PbI₃ particle.

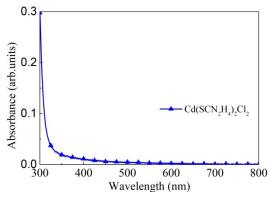


Figure S6 UV-vis absorption spectra of the Cd(SCN₂H₄)₂Cl₂ film.

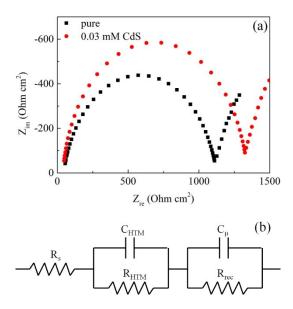


Fig. S7 Electrochemical impedance spectra (EIS) of the PSCs under illumination100 mW/cm².

Table S1 The fitting parameters for measured EIS results with different device.

Devices	$R_S(\Omega \text{ cm}^2)$	R _{HTM} (mA cm ⁻²)	R _{rec} (mA cm ⁻²)	C _{HTM} (μF cm ⁻²)	C _μ (nF m ⁻²)
Solar cells with	44.88	1202	1077	24.9	45.8
pure CH ₃ NH ₃ PbI ₃					
Solar cells with	39.76	1345	1294	81.8	13.5
C:C:CH ₃ NH ₃ PbI ₃					