Supporting Information

Approaching FeS₂ micron particles as the electrode material for

lithium ion batteries via the simultaneous construction of CNTs'

internal network and external cage

Jianhao Lu¹, Fang Lian^{1,*}, Liangliang Guan¹, Yuxuan Zhang¹, Fei Ding²

1 School of Materials Science and Engineering, University of Science &Technology Beijing, Beijing 100083, PR China

2 Science and Technology on Power Sources Laboratory, Tianjin Institute of Power Sources, Tianjin 300384, PR China

*Corresponding author: lianfang@mater.ustb.edu.cn

Fig. S1 Schematics of oxygen functional groups on the surface of CNTs after oxidation treatment (a); FTIR general spectra of multi-wall carbon nanotubes (b)

rable of the properties of ervis after oxidation deathent						
Product	Purity (%)	BET (m ² ·g ⁻¹)	Length	Diameter	Resistivity	
			(µ m)	(nm)	$(\Omega \cdot \mathbf{cm})$	
Multi-wall CNTs	≥98	110-170	0.5-2	13-25	0.0761	

Table S1 The properties of CNTs after oxidation treatment

Fig. S2 SEM images of FeS_2 without CNTs

Fig. S3 The Fe 2p XPS spectrum of FeS₂@B-CNTs

Fig. S4 TGA result of FeS₂@B-CNTs microspheres under air atmosphere

Fig. S5 The electrochemical impedance plots of FeS₂@B-CNTs and FeS₂ electrodes (a); equivalent circuit model for the FeS₂@B-CNTs and FeS₂ electrodes (b)

Fig. S6 TEM images (a-c) of FeS₂@B-CNTs electrodes after cycled

res ₂ electrodes of previous reports for Er for storage						
Material	Current (mA \cdot g ⁻¹)	Capacity (mAh·g ⁻¹)	Particle size			
pitaya-structured FeS21	300	614 (100 th)	nanometer			
PAN–FeS ₂ ²	89.4	470 (50 th)	nanometer			
FeS_2 nanowires ³	89.4	350 (50 th)	nanometer			
FeS ₂ @N-graphene ⁴	500	401 (400 th)	nanometer			
FeS ₂ nanocrystals ⁵	200	630 (100 th)	nanometer			
This work	1000	697 (500 th)	micrometer			

Table S2. Comparison of electrochemical performance between $FeS_2@B-CNTs$ and FeS_2 electrodes of previous reports for Li–ion storage

Reference

- 1. X. Xu, J. Liu, Z. Liu, J. Shen, R. Hu, J. Liu, L. Ouyang, L. Zhang and M. Zhu, ACS nano, 2017, 11, 9033-9040.
- S. B. Son, T. A. Yersak, D. M. Piper, S. C. Kim, C. S. Kang, J. S. Cho, S. S. Suh, Y. U. Kim, K. H. Oh and S. H. Lee, Advanced Energy Materials, 2014, 4, 1300961.
- 3. L. Li, M. Cabán-Acevedo, S. N. Girard and S. Jin, Nanoscale, 2014, 6, 2112-2118.
- 4. R. Tan, J. Yang, J. Hu, K. Wang, Y. Zhao and F. Pan, Chem. Commun., 2016, 52, 986-989.
- 5. M. Walter, T. Zünd and M. V. Kovalenko, Nanoscale, 2015, 7, 9158-9163.