Benzothiadiazole Functionalized D-A Type Covalent

Organic Frameworks for Effective Photocatalytic Reduction

of Aqueous Chromium (VI)

Weiben Chen, ${ }^{\text {a }}$ Zongfan Yang, ${ }^{a}$ Zhen Xie, ${ }^{a}$ Yusen Li, ${ }^{a}$ Xiang Yu ${ }^{b}$ Fanli Lu, ${ }^{a}$ and Long Chen ${ }^{\text {a* }}$
${ }^{a}$ Department of Chemistry and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China
${ }^{b}$ Analytical and Testing Center, Jinan University, Guangzhou 510632, China
*E-mail: long.chen@tju.edu.cn (L. Chen)

Contents

Section 1. Materials and Methods
Section 2. Synthetic Procedures
Section 3. ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\boldsymbol{\&}^{13} \mathbf{C}$ NMR Spectra
Section 4. Elemental Analysis
Section 5. FT-IR Spectral Profiles
Section 6. UV-visible Spectra
Section 7. Thermal Stability Analysis
Section 8. Chemical Stability Tests
Section 9. Photostability Tests
Section 10. Scanning Electron Microscopy
Section 11. Transmission Electron Microscopy
Section 12. Electrochemical Properties of BT-COFs
Section 13. Photoreduction of Chromium(VI) to Chromium(III)
Section 14. Recycling Experiments
Section 15. $\mathbf{\bullet O H}$ Radicals Test
Section 16. The Photocatalytic Performance Comparison
Section 17. Calculated Molecular Orbitals and Staggered AB Packing Modes
Section 18. Supporting References

Section 1. Materials and Methods

o-dichlorobenzene (o-DCB), n-butanol ($\mathrm{n}-\mathrm{BuOH}$) were purchased from Aladdin industrial corporation, Shanghai, China. 1,5-Diphenylcarbohydrazide was obtained from Adamas Reagent, Ltd. All the commercial chemicals were directly used as received without further purification.
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of all monomers were carried out on a Bruker AVANCE III-400MHz NMR spectrometer. The ${ }^{13} \mathrm{C}$ CP/MAS NMR spectra were obtained on Varian Infinityplus 300 (300 MHz) solid-state NMR spectrometer. Fluorescence measurement were performed on a Hitachi F-7000 fluorescence spectrophotometer. Elemental analyses were carried out on Elementar model Vario Micro analyzer. Thermogravimetric analysis (TGA) of BT-COFs were evaluated in TA instrumentsTGA-Q50-1918 analyzer from room temperature to $800{ }^{\circ} \mathrm{C}$ under N_{2} atmosphere with a heating rate of $10^{\circ} \mathrm{C} / \mathrm{min}$. The Powder X-ray diffraction (PXRD) patterns were obtained on RIGAKU SMARTLAB-9KW with a Cu-target tube and a graphite monochromator. Transmission electron microscopies (TEM) and highresolution transmission electron microscopies (HR-TEM) were performed on a FEI model Tecani 20 microscope and a JEOL model JSM-2100F. Field emission scanning electron microscopies (FE-SEM) were carried out using a JEOL model JSM-6700 microscope operating at an accelerating voltage of 5.0 kV . The nitrogen adsorption and desorption were measured by using a Bel Japan Inc. model BELSOPR-mini II analyser and the samples were degassed at $100^{\circ} \mathrm{C}$ for 3 h under vacuum ($10^{-5} \mathrm{bar}$) before analysis. The pore size distribution was calculated from the adsorption branch with the nonlocal density functional theory (NLDFT). X-ray photoelectron spectroscopy (XPS) was performed using 65 HP 5950 A with $\mathrm{Mg} \mathrm{K} \alpha$ as the source and the C 1s peak at 284.6 eV as an internal standard.

Electrochemical Characterization. CHI-660E electrochemical workstation (CH Instruments, USA) with three-electrode system was used to determine electrochemical measurements (working electrode: the glass carbon electrode (GCE), counter electrode: platinum wire electrode, and reference electrode: saturated calomel electrode (SCE)).

To create measurable COF films, the BT-COF (2 mg) was mixed with $5 \mathrm{wt} \%$ Nafion $(20 \mu \mathrm{l})$ and ethanol $(490 \mu \mathrm{l})$ and ultrasonic for 30 min . The glassy carbon working electrode was painted with the mixture, and the solvents were evaporated in a vacuum oven for 12 h . The measurements were carried out in tetrabutylammonium phosphate (0.1 M) in acetonitrile. A Pt counter electrode and a SCE reference electrode were used. Scan rate: $100 \mathrm{mV} / \mathrm{s}, \mathrm{T}=25^{\circ} \mathrm{C}$.

For the transient photocurrent measurements, the COFs electrodes were obtained by adding 5 mg photocatalyst in 0.5 mL distilled water, and then the suspensions were sonicated for 15 min . To the slurries were added the $5 \mathrm{wt} \%$ Nafion solution (20 $\mu \mathrm{l}$) and then sonicated for another 60 min . The obtained slurries were dropped on the ITO electrode (surface area $c a .1 \times 1 \mathrm{~cm}^{2}$) and dried in air for 12 h . The photocurrent measurements were performed at -0.4 V bias voltage in $\mathrm{Na}_{2} \mathrm{SO}_{4}(0.5 \mathrm{M})$ solution.

Section 2. Synthetic Procedures

Scheme S1. Synthetic routes of benzo[c][1,2,5]thiadiazole-4,7-dicarbaldehyde.
4,7-Bis(bromomethyl)benzo[c] $[1,2,5]$ thiadiazole (1): To the stirred solution of 2,1,3-benzothiadiazole ($5.0 \mathrm{~g}, 36.8 \mathrm{mmol}$) in 48% aqueous hydrobromic acid ($\mathrm{HBr}, 100$ mL) and glacial acetic acid (60 mL) were added 1,3,5-trioxane ($10.0 \mathrm{~g}, 111 \mathrm{mmol}$) and trimethyl(tetradecyl)ammonium bromide ($1.0 \mathrm{~g}, 3 \mathrm{mmol}$). The solution was heated to refluxed for 24 h . After cooling to room temperature, the reaction mixture was poured to ice/water mixture, filtered and washed with water and ethanol and then dried under vacuum to afford compound as a white solid. Yield: ($7.8 \mathrm{~g}, 63 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $400 \mathrm{MHz}) \delta(\mathrm{ppm})=7.63(\mathrm{~s}, 2 \mathrm{H}), 4.97(\mathrm{~d}, 4 \mathrm{H})$.

Benzo[c][1,2,5]thiadiazole-4,7-dicarbaldehyde (BT): To a mixture of compound $1(3.0 \mathrm{~g}, 9.0 \mathrm{mmol})$ and N -bromosuccinimide (NBS) ($4.4 \mathrm{~g}, 37.3 \mathrm{mmol}$) in tetrachloromethane (30 ml) was added benzoyl peroxide ($70 \mathrm{mg}, 0.3 \mathrm{mmol}$). The mixture was heated under reflux for 24 h . The reaction mixture was cooled to room temperature. Afterward, the mixture was filtered and then dried under vacuum to give an off-white solid 2. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right), \delta(\mathrm{ppm})=8.12(2 \mathrm{H}, \mathrm{s}), 7.44(2 \mathrm{H}, \mathrm{s})$. Without further purification, to a refluxed solution of the compound $\mathbf{2}(4 \mathrm{~g}, 16.8 \mathrm{mmol})$ in ethanol (100 mL) was added a solution of silver nitrate ($6.0 \mathrm{~g}, 35.3 \mathrm{mmol}$) in 5 mL water. The mixture was heated under reflux for 24 h . The reaction mixture was cooled to room temperature. The solid salts were filtered and washed by water and ethanol. The solvent in filtrate was eliminated by rotary evaporator to give the yellow solid. The residue was purified with silica gel column chromatography to give compound BT as pale yellow solid. Yield: $(420 \mathrm{mg}, 52 \%) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta(\mathrm{ppm})=10.93$ $(2 \mathrm{H}, \mathrm{s}), 8.36(2 \mathrm{H}, \mathrm{s})$.

Scheme S2. Synthetic routes of 1,3,5-tris(4-aminophenyl)benzene.
1,3,5-tris(4-aminophenyl)benzene (TPB): 1,3,5-tribromobenzene ($438 \mathrm{mg}, 2$ mmol) and 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)aniline ($190 \mathrm{mg}, 6 \mathrm{mmol}$) were dissolved in 6 ml of DMF. Then, an aqueous $\mathrm{K}_{2} \mathrm{CO}_{3}(2 \mathrm{~mL}, 2.0 \mathrm{M})$ were added. After degassing by argon bubbling, tetrakis(triphenylphosphine)palladium(0) (35 mg , 0.03 mmol) were added. The reaction mixture was heated to $100{ }^{\circ} \mathrm{C}$ for 24 h . The crude product was purified by column chromatography to afford an off-white solid. Yield $(400 \mathrm{mg}, 57 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta(\mathrm{ppm})=7.59(\mathrm{~s}, 3 \mathrm{H}), 7.51(\mathrm{~d}, \mathrm{~J}=8.7$ $\mathrm{Hz}, 6 \mathrm{H}), 6.77(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 6 \mathrm{H}), 3.82(\mathrm{~s}, 6 \mathrm{H})$.

Scheme S3. Synthetic routes of 1,3,5-tris-(4-aminophenyl)triazine.
1,3,5-tris-(4-aminophenyl)triazine (TAPT): 4 -aminobenzonitrile ($772 \mathrm{mg}, 6.54$ mmol) was added to a two-neck round-bottom flask. Then, trifluoromethanesulfonic acid ($4 \mathrm{~mL}, 44.4 \mathrm{mmol}$) was added dropwise under an inert atmosphere at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred continuously at room temperature under inert conditions for 24 h . After the completion of the reaction, distilled water (40 mL) was poured into the final mixture, followed by an aqueous solution of sodium hydroxide for neutralization until the final pH value was approximately 7. Initially, a deep-orange precipitate appeared with increasing pH value under basic conditions. The mixture was extracted by ethyl acetate ($20 \mathrm{~mL} \times 3$). The organic phase was combined and the solvent was removal by reduce pressure evaporator. The pale-yellow residue was purified with silica gel column chromatography (petroleum : ethyl acetate $=1: 1$). Yield (434 mg , $56 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta(\mathrm{ppm})=8.34(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 6 \mathrm{H}), 6.68(\mathrm{~d}, \mathrm{~J}=8.5$ $\mathrm{Hz}, 6 \mathrm{H}), 5.88$ (s, 6H).

TPB-BT-COF: A 10 mL Pyrex tube was charged with 1,3,5-tris(4aminophenyl)benzene ($20 \mathrm{mg}, 0.057 \mathrm{mmol}$), benzo[c][1,2,5]thiadiazole-4,7dicarbaldehyde ($15.6 \mathrm{mg}, 0.081 \mathrm{mmol}$) and o-dichlorobenzene $/ \mathrm{n}$-butyl alcohol ($1: 1 \mathrm{v} / \mathrm{v}$, 1 mL). After the mixture was sonicated for 1 min , an orange suspension was obtained. Subsequently, 0.1 mL of acetic acid (3 M) were added. After the mixture was sonicated for another 1 min again. Afterwards, the tube was flash frozen at 77 K using a liquid N_{2} bath and degassed by three freeze-pump-thaw cycles, sealed under vacuum and then heated at $120^{\circ} \mathrm{C}$ for 3 days. A deep orange-red precipitate was formed, which was collected by sucking filtration and washed with N, N-dimethylformamide, anhydrous ethanol, acetone, and dichloromethane, separately. The collected sample was dried
under vacuum for 24 h to give an orange red colored powder ($30 \mathrm{mg}, 92 \%$ isolated yield). IR (powder, cm^{-1}): 1690 (w), 1618 (w), 1596 (s), 1570 (m), 1504(s), 1441 (m), 1388 (m), 1260 (m), 1171(w), 1151(w), 823 (s). Elemental analysis (\%): Anal. Calcd. For $\left(\mathrm{C}_{72} \mathrm{H}_{54} \mathrm{~N}_{12} \mathrm{~S}_{3}\right)$ (theoretical formula for an infinite 2D COF): C, $73.83 ; \mathrm{H}, 3.61$; N , 14.35. Found: C, 69.42; H, 5.88; N, 12.09.

TAPT-BT-COF: A 10 mL Pyrex tube was charged with 1,3,5-tris-(4aminophenyl)triazine $(20 \mathrm{mg}, \quad 0.056 \mathrm{mmol})$, benzo[c][1,2,5]thiadiazole-4,7dicarbaldehyde ($15.6 \mathrm{mg}, 0.081 \mathrm{mmol}$) and o-dichlorobenzene $/ \mathrm{n}$-butyl alcohol ($1: 1 \mathrm{v} / \mathrm{v}$, 1 mL). After the mixture was sonicated for 1 min , an orange suspension solution was obtained. Subsequently, 0.1 mL of acetic acid (3 M) were added. After the mixture was sonicated for another 1 min again. Afterwards, the tube was flash frozen at 77 K using a liquid N_{2} bath and degassed by three freeze-pump-thaw cycles, sealed under vacuum and then heated at $120^{\circ} \mathrm{C}$ for 3 days. A deep orange precipitate was formed, which was collected by sucking filtration and washed with N, N-dimethylformamide, anhydrous ethanol, acetone, and dichloromethane, separately. The collected sample was dried under vacuum for 24 h to give a deep orange powder ($32 \mathrm{mg}, 98 \%$ isolated yield). IR (powder, cm^{-1}): 1690 (w), 1614 (w), 1689 (w), 1577 (m), 1500 (s), 1415 (s), 1358 (m), 1255 (m), 1173(m), 1142(m), 811 (s). Elemental analysis (\%): Anal. Calcd. For $\left(\mathrm{C}_{66} \mathrm{H}_{48} \mathrm{~N}_{18} \mathrm{~S}_{3}\right)$ (theoretical formula for an infinite 2D COF): C, 67.28; H, 3.08; N, 21.42. Found: C, 66.97; H, 4.97; N, 19.34.

Scheme S4. synthetic routes of TPB-TP-COF.

TPB-TP-COF: A 10 mL Pyrex tube was charged with 1,3,5-tris(4aminophenyl)benzene ($28 \mathrm{mg}, 0.08 \mathrm{mmol}$), terephthalaldehyde ($16 \mathrm{mg}, 0.11 \mathrm{mmol}$) and o-dichlorobenzene/n-butyl alcohol ($1: 1 \mathrm{v} / \mathrm{v}, 1 \mathrm{~mL}$). After the mixture was sonicated for 1 min , an orange suspension solution was obtained. Subsequently, 0.1 mL of acetic acid (6 M) were added. After the mixture was sonicated for another 1 min again. Afterwards, the tube was flash frozen at 77 K using a liquid N_{2} bath and degassed by three freeze-pump-thaw cycles, sealed under vacuum and then heated at $120^{\circ} \mathrm{C}$ for 3 days. A bright yellow precipitate was formed, which was collected by sucking filtration and washed with N, N-dimethylformamide, anhydrous ethanol, acetone, and dichloromethane, separately. The collected sample was dried under vacuum for 24 h to give a bright yellow powder ($35 \mathrm{mg}, 88 \%$ isolated yield).

Section 3. ${ }^{1} \mathrm{H}$ NMR \& ${ }^{13} \mathrm{C}$ NMR Spectra

(a)

(b)

Figure S1. ${ }^{1} \mathrm{H} \quad \mathrm{NMR} \quad\left(400 \mathrm{MHz}, \quad \mathrm{CDCl}_{3}\right) \quad$ spectra of (a) 4,7- Bis(bromomethyl)benzo[c][1,2,5]thiadiazole and (b) Benzo[c][1,2,5]thiadiazole-4,7dicarbaldehyde (BT).
(a)

(b)

Figure S2. ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \quad \mathrm{CDCl}_{3}$) spectra of (a) 1,3,5-tris(4aminophenyl)benzene (TPB) and (b) 1,3,5-tris-(4-aminophenyl)triazine (TAPT).

Figure S3. Solid state ${ }^{13} \mathrm{C}$ NMR spectra of (a) TPB-BT-COF and (b) TAPT-BT-COF.

Section 4. Elemental Analysis

Table S1. Elemental analysis of TPB-BT-COF and TAPT-BT-COF.

COFS		\mathbf{C}	\mathbf{N}	\mathbf{H}
TPB-BT-COF	Anal. Calcd.	73.83%	14.35%	3.61%
	Found	69.42%	12.09%	5.88%
TAPT-BT-COF	Anal. Calcd.	67.28%	21.42%	3.08%
	Found	66.97%	19.34%	4.97%

Section 5. FT-IR Spectral Profiles

Figure S4. (a) FT-IR spectra comparison of the TPB-BT-COF (black line), monomer TPB (red line) and monomer BT (blue line); (b) FT-IR spectra comparison of the bulk TAPT-BT-COF (black line), TAPT (red line) and monomer BT (blue line).

Section 6. UV-visible Diffuse Reflectance Spectra

Figure S5. (a) UV-visible diffuse reflectance spectra and (b) Kubelka-Munktransformed reflectance spectra of the bulk TPB-BT-COF (black curve), TAPT-BTCOF (red curve) and the control samples of TPB-TP-COF (blue) in the solid state

Section 7. Thermal Stability Analysis

Figure S6. Thermogravimetric analysis (TGA) profiles of TPB-BT-COF (black) and TAPT-BT-COF (red) range from room temperature to $800{ }^{\circ} \mathrm{C}$ at $10{ }^{\circ} \mathrm{C} / \mathrm{min}$. TGA analysis indicated that both TPB-BT-COF and TAPT-BT-COF were thermally stable up to about $450^{\circ} \mathrm{C}$.

Section 8. Chemical Stability Tests

The typical procedure for the chemical stability tests of BT-COFs are described as follows. ${ }^{\text {S4 }}$ BT-COFs (15 mg) were as firstly dispersed in 2 mL of acetone. To the mixture was added 2 mL of an aqueous solution ($\mathrm{pH}=1$ for hydrochloric acid aqueous solution and $\mathrm{pH}=13$ for sodium hydroxide aqueous solution), and then the resulting suspension was kept for 12 h at room temperature. The resulted BT-COFs material was then isolated by centrifugation, washed with aqueous acetone solutions ($\mathrm{V}_{\mathrm{H} 2 \mathrm{O}} /$ Vacetone $=1 / 1,3 \times 6 \mathrm{~mL}$) and THF, and then dried at room temperature under vacuum for 12 h . The structure of the dried BT-COF materials was then assessed via FT-IR spectroscopy and PXRD analysis. The results were shown in Figures S7 and S8, which indicate that BT-COFs are stable in aqueous solutions ($\mathrm{pH}=1$ and 13).

To the boiling water was added the BT-COFs (15 mg) and acutely stirred for 24 h. Subsequently, the solid reside were separated through the centrifugation and washed $\mathrm{EtOH}, \mathrm{THF}$, acetone, and then dried under vacuum for 12 h at room temperature. The results were shown in Figures S9 and S10, which indicate that BT-COFs are stable in the boiling water.

Figure S7. FT-IR spectra comparison of a) TPB-BT-COF and b) TAPT-BT-COF at different pH values.

Figure S8. PXRD patterns of a) TPB-BT-COF and b) TAPT-BT-COF at different pH values.

Figure S9. FT-IR spectra of BT-COFs before and after boiling water treatment: a) TPB-BT-COF and b) TAPT-BT-COF.

Figure S10. PXRD patterns of BT-COFs before and after boiling water treatment: a) TPB-BT-COF and b) TAPT-BT-COF.

Section 9. Photostability Tests

Figure S11. FT-IR spectra of a) TPB-BT-COF and b) TAPT-BT-COF in water for under visible light irradiation 2 h and 12 h .

Figure S12. PXRD patterns of the bulk TPB-BT-COF and TAPT-BT-COF in water under visible light irradiation for 2 h and 12 h .

Section 10. Scanning Electron Microscopy

Figure S13. (a), (b) SEM images of TPB-BT-COF and (c), (d) TAPT-BT-COF. The images indicated that microstructures of both BT-COFs exhibited nanowire morphology.

Section 11. Transmission Electron Microscopy

Figure S14. Representative TEM images of TPB-BT-COF (a) Low magnification image confirming the nanofibrillar structure and (b) HRTEM image showing fringes of periodicity.

Figure S15. Representative TEM images of TAPT-BT-COF (a) Low magnification image confirming the nanofibrillar structure and (b) HR-TEM image showing fringes of periodicity.

Section 12. Electrochemical Properties of BT-COFs

Figures S16. Cyclic voltammograms of BT-COFs: (a) TPB-BT-COF and (b) TAPT-BT-COF.

Table S2. Electrochemical properties of TPB-BT-COF and TAPT-BT-COF

$\begin{aligned} & \text { BT- } \\ & \text { COFs } \end{aligned}$	$\mathbf{E}_{\text {red }}$ Onet [V] ${ }^{\text {a }}$	$\begin{gathered} \text { CB } \\ {[\mathrm{V}]^{\mathrm{c}}} \end{gathered}$	$\begin{gathered} \text { HOM } \\ \text { O }[\mathrm{eV}] \\ \mathrm{b} \end{gathered}$	$\begin{gathered} \text { LUMO } \\ {[\mathrm{eV}]^{\mathrm{b}}} \end{gathered}$	$\begin{gathered} \text { HOMO } \\ {[\mathrm{eV}]^{\mathrm{d}}} \end{gathered}$	$\begin{gathered} \text { LUM } \\ \text { O }[\mathrm{eV}] \\ \mathrm{d} \end{gathered}$	Band gap $[\mathrm{eV}]^{\mathrm{d}}$	$\begin{gathered} \text { Band } \\ \text { gap }[\mathrm{eV}] \end{gathered}$
$\begin{aligned} & \text { TPB- } \\ & \text { BT- } \\ & \text { COF } \end{aligned}$	-1.05	-0.41	-5.86	-3.75	-5.56	-4.21	1.35	2.05
$\begin{gathered} \text { TAPT- } \\ \text { BT- } \\ \text { COF } \end{gathered}$	-0.94	-0.30	-5.99	-3.86	- 5.46	-3.85	1.61	2.13

${ }^{a}$ Ferrocenelferrocenium redox-couple is used as reference. ${ }^{b}$ The HOMO/LUMO levels are calculated according to the equations: $E_{L U M O}=-\left(4.8+E_{\text {red-onset }}\right) \mathrm{eV} . E_{\text {Hомо }}=E_{L U M O}-E_{\text {gap. }}{ }^{c} C B$ is conduction band; for conversion from Ferrocene/ferrocenium redox-couple to the Normal Hydrogen Electrode (NHE), the equation: $E_{N H E}=E_{F c / F c}{ }^{+}-0.64 \mathrm{~V}$ is applied. ${ }^{55}$ dobtained by calculation at MS.7.0.

Section 13. Photoreduction of Chromium (VI) to Chromium (III)

In a 10 ml of reaction tube, the porous monolith of COFs (ca. 10 mg) was added into 10 ml of $\mathrm{Cr}(\mathrm{VI})$ solution $(10 \mathrm{mg} / \mathrm{L})$. Firstly, the mixture was stirred constantly about 2 h for reaching adsorption and desorption equilibrium under Ar gas. Afterward, the mixture was illuminated with $>400 \mathrm{~nm}$ Xe lamp light source. 1 mL of $\mathrm{Cr}(\mathrm{VI})$ solution after photocatalytic reduction was mixed with $\mathrm{H}_{2} \mathrm{SO}_{4}(9 \mathrm{~mL}, 0.2 \mathrm{M})$, and then 0.2 mL of freshly prepared $0.25 \%(\mathrm{w} / \mathrm{v}) \mathrm{DPC}$ in acetone was added. After the mixture were stirred for ca. 1 min , and was allowed to keep ca. 15 min . The obtained purple color was then measured at $c a .540 \mathrm{~nm}$ in UV-vis spectroscopy. ${ }^{\mathbf{s 5}}$

Figure S17. (a) UV-vis spectra and (b) concentration monitoring of the control experiment of using same light irradiation conditions but without BT-COF catalysts. C is the concentration of $\mathrm{Cr}(\mathrm{VI})$ after irradiation for different time and C_{0} is the initial concentration.

Figure S18. UV-vis spectra monitoring of DPC for determination of the adsorption of Cr (VI) onto (a) TPB-BT-COF and (c) TAPT-BT-COF in dark; The concentration variation of Cr (VI) upon adsorption onto (b) TPB-BT-COF and (d) TAPT-BT-COF in dark. Negligible removal of $\mathrm{Cr}(\mathrm{VI})$ by physical adsorption was observed. These results indicated that the photocatalytic reduction effect mainly contributed to the removal of $\mathrm{Cr}(\mathrm{VI})$.

Figure S19. UV/vis absorption of DPC for determination of the photocatalytic reduction $\mathrm{Cr}(\mathrm{VI})$ to $\mathrm{Cr}(\mathrm{III})$ using TPB-TP-COF as photocatalyst in water under visible light irradiation.

Figure S20. The color change of DPC for determination of the photocatalytic reduction $\mathrm{Cr}(\mathrm{VI})$ to Cr (III) using TPB-TP-COF as photocatalyst in water under > 400nm Xe lamp light source irradiation.

Figure S21. (a) Nitrogen-sorption isotherms of TPB-BT-COFs with different surface areas; (b) UV/vis absorption of DPC for determination of the photocatalytic reduction $\mathrm{Cr}(\mathrm{VI})$ to $\mathrm{Cr}(\mathrm{III})$ using less porous TPB-TP-COF $\left(420 \mathrm{~m}^{2} \mathrm{~g}^{-1}\right)$ as photocatalyst in water under visible light irradiation; (c) The photocatalytic rate comparison of TPB-TP-COF with different porosity, which indicate the porosity has negligible effect on the photocatalytic performance.

Figure S22. (a) UV/vis absorption of DPC for determination of the photocatalytic reduction $\mathrm{Cr}(\mathrm{VI})$ to $\mathrm{Cr}(\mathrm{III})$ using TPB-BT-COF with addition of the h^{+}scavenger: phenol in water under visible light irradiation; (b) The photocatalytic rate comparison of TPB-BT-COF with and without addition of the h^{+}scavenger: phenol; (c) Photograph of photocatalytic reduction using TPB-BT-COF with addition of phenol.

Figure S23. (a) XPS survey spectra and (b) high-resolution XPS spectra of TAPT-BTCOF after 1 cycles of photocatalysis. The two peaks at 576.7 and 586.2 eV are assigned to the $2 \mathrm{p}_{3 / 2}$ and $2 \mathrm{p}_{1 / 2}$ of Cr (III), which further confirmed the reduction of $\mathrm{Cr}(\mathrm{VI})$ to Cr (III) ${ }^{.56, S 7}$

Section 14. Recycling Experiments

Figure S24. Recycling experiments of the photocatalytic reduction of $\mathrm{Cr}(\mathrm{VI})$ using BTCOFs in water under visible light irradiation: (a) TPB-BT-COF; and (b) TAPT-BTCOF .

Figure S25. FT-IR spectra of a) TPB-BT-COF and b) TAPT-BT-COF at different cycle number under visible light irradiation.

Figure S26. PXRD pattern comparison of a) TPB-BT-COF and b) TAPT-BT-COF before and after photocatalysis showing retention of crystallinity.

Section 15. $\cdot \mathrm{OH}$ Radicals Test

The \cdot OH radical reactions were performed as follows: BT-COFs (5 mg) was suspended 8 mL aqueous solution containing 10 mM of NaOH and 5 mM of terephthalic acid (TA). The suspension was stirred in the dark for 30 min before exposing to visible light irradiation. After irradiated under visible light for 20 min , the mixture was centrifuged for fluorescence spectroscopy measurements. A fluorescence spectrophotometer was used to measure the fluorescence of the in-situ generated 2-hydroxy-terephthalic acid (TAOH). The excitation light wavelength used in recording fluorescence spectra was 320 nm .

Section 16. The Photocatalytic Performance Comparison

Table S3. The photocatalytic performance comparison of BT-COFs with other reported photocatalysts.

Type	Catalyst	Concentra tion of Cr(VI) ions	Irradiat ion time (min)	hole scaven ger agents	pH value	degrada tion degree	Ref
Polym er	$\begin{gathered} \text { TPB-BT- } \\ \text { COF } \end{gathered}$	$10 \mathrm{mg} / \mathrm{L}$	75	no	$\begin{gathered} \mathrm{pH}= \\ 7 \end{gathered}$	99\%	Curr ent work
	TAPT-BTCOF	$10 \mathrm{mg} / \mathrm{L}$	105	no	$\begin{gathered} \mathrm{pH}= \\ 7 \end{gathered}$	99\%	
	$\begin{gathered} \text { TPB-TP- } \\ \text { COF } \end{gathered}$	$10 \mathrm{mg} / \mathrm{L}$	105	no	$\begin{gathered} \mathrm{pH}= \\ 7 \end{gathered}$	80\%	
	Phlo-POF	$6 \mathrm{mg} / \mathrm{L}$	60	no	$\mathrm{pH}=3$	100\%	S8
	P-FL-BT-	$25 \mathrm{mg} / \mathrm{L}$	120	no	pH =	100\%	S9
	3				7		
	g-C3 N_{4}	$10 \mathrm{mg} / \mathrm{L}$	180	no	$\mathrm{pH}=$	50\%	S10

68(In)-							
NH_{2}							
	MIL-	$20 \mathrm{mg} / \mathrm{L}$	180	EtOH	$\mathrm{pH}=2$	0\%	S14
68(In)							
	$\mathrm{AgBr}-$	$15 \mathrm{mg} / \mathrm{L}$	80	no	$\mathrm{pH}=$	66\%	S15
	hexagonal				7		
	(AgIn)xZn	--	90	no	$\mathrm{pH}=$	99\%	S7
	2(1-x) S_{2}				7		
Inorga $/ \mathbf{A g}_{2} \mathrm{~S}$							
nic	$\mathbf{A g}_{2} \mathbf{S}-\mathbf{A g}$	$10 \mathrm{mg} / \mathrm{L}$	80	no	$\mathrm{pH}=$		S16
Materi	(H-2)				7		
als	TiO_{2}	$20 \mathrm{mg} / \mathrm{L}$	60	no	$\mathrm{pH}=$	80\%	S17
					7		
	MCRCSs	$30 \mathrm{mg} / \mathrm{L}$	120	no	$\mathrm{pH}=2$	100\%	S18
	$\mathrm{BiVO}_{4} / \mathrm{Bi}_{2}$	$10 \mathrm{mg} / \mathrm{L}$	60	no	$\mathrm{pH}=$	91.2\%	S19
	$\mathrm{S}_{3}(\mathbf{H}-3)$				7		

Section 17. Calculated Molecular Orbitals and Staggered AB Packing

Modes

Figure S27. Calculated (a) HOMO and (b) LUMO of TPB-BT-COF for -5.5658 eV and -4.2055 eV , respectively. In the calculated HOMO of the repeating unit of the framework of TPB-BT-COF, electrons are delocalized over the two TPB segments; while in the LUMO, electrons are mainly distributed in the BT units. This results clearly demonstrated that TPB moiety served as the donor, whereas the BT unit works as the acceptor in the D-A framework skeleton. This structure is well known to be beneficial for intramolecular charge transfer and charge separation upon photoexcitation.

(b)

Figure S28. Calculated (a) HOMO and (b) LUMO of TAPT-BT-COF for -5.4633 eV and -3.8508 eV , respectively. In the calculated HOMO of the repeating unit of TAPT-BT-COF, electrons are delocalized over almost the whole skeletons; while in the LUMO, electrons are mainly distributed in the BT units. These results indicated that TAPT-BT-COF did own intramolecular charge transfer effect but is much less effective compared to that of TPB-BT-COF.
(a)

(b)

f

Figure S29. (a) Top-view and (b) Side-view of the TPB-BT-COF in staggered AB stacking modes.
(a)

(b)

Figure S30. (a) Top-view and (b) Side-view of the TAPT-BT-COF in staggered AB stacking modes.

Figure S31. The light harvesting efficiency (LHE) spectra of TPB-BT-COF (red), TAPT-BTCOF (blue) and TPB-TP-COF (magenta) from UV-vis absorption spectra. The light harvesting efficiency (LHE) was defined as LHE $=1-10^{-\mathrm{A}}$ (A is absorbance obtained from the UV-vis measurement).

Figure S32. Electrochemical impedance spectra of TPB-BT-COF (black line), TAPT-BT-COF (red line) and TPB-TP-COF (black line) under visible light irradiation.

Table S4. Atomic coordinates of AA-stacking mode of TPB-BT-COF using DFTB+ method.

	Space group: P6$\begin{gathered} a=37.9853 \AA, b=37.9853 \AA, \text { and } c=3.4885 \AA . \\ \alpha=\beta=90^{\circ}, \text { and } \gamma=120^{\circ} \end{gathered}$		
	X	Y	Z
C	1.48667	-0.97193	-0.50000
C	1.45868	-1.01390	-0.50000
C	1.47223	-1.04232	-0.50000
C	1.51448	-1.02716	-0.50000
C	1.54160	-0.98630	-0.50000
C	1.52883	-0.95752	-0.50000
C	1.55881	-0.91359-	-0.50000
C	1.31071	-0.37554	-0.50000
C	1.35350	-0.35664	-0.50000
C	1.24347	-0.37502	-0.50000
C	1.22225	-0.35307	-0.50000
C	1.17980	-0.37296	-0.50000
C	1.15666	-0.41515	-0.50000
C	1.17667	-0.43770	-0.50000
C	1.21916	-0.41808	-0.50000
C	1.44200	-0.08624	-0.50000
N	1.45348	-0.11320	-0.50000
C	1.68631	-0.68923	-0.50000

C	1.71015	-0.64643	-0.50000
C	1.61861	-0.75654	-0.50000
C	1.57545	-0.77783	-0.50000
C	1.55295	-0.82029	-0.50000
C	1.57206	-0.84339	-0.50000
C	1.61464	-0.82326	-0.50000
C	1.63743	-0.78078	-0.50000
N	1.54687	-0.88693	-0.50000
N	1.41765	-0.53275	-0.50000
S	1.39575	-0.58405	-0.50000
N	1.44200	-0.58047	-0.50000
H	1.47551	-0.95066	-0.50000
H	1.42645	-1.02415	-0.50000
H	1.59069	-0.90444	-0.50000
H	1.29348	-0.40768	-0.50000
H	1.23717	-0.32047	-0.50000
H	1.16443	-0.35543	-0.50000
H	1.16003	-0.47048	-0.50000
H	1.23167	-0.43793	-0.50000
H	1.41020	-0.09513	-0.50000
H	1.70128	-0.70641	-0.50000
H	1.55772	-0.76296	-0.50000
H	1.52008	-0.83560	-0.50000

\mathbf{H}	1.63088	-0.83979	-0.50000
\mathbf{H}	1.66980	-0.76821	-0.50000

Table S5. Atomic coordinates of staggered AB-stacking mode of TPB-BT-COF using DFTB+ method.

	Space group: P6$\begin{gathered} a=37.6121 \AA, b=37.6121 \AA, \text { and } c=6.3664 \AA . \\ \alpha=\beta=90^{\circ}, \text { and } \gamma=120^{\circ} \end{gathered}$		
	X	Y	Z
C	-0.17945	-0.30527	0.00000
C	-0.20702	0.65191	0.00000
C	-0.19403	0.62325	0.00000
C	-0.14981	0.63712	-0.00000
C	-0.12142	-0.31777	0.00000
C	-0.13702	-0.28923	0.00000
C	-0.10806	-0.24540	0.00000
C	-0.35616	0.29060	0.00000
C	-0.31325	0.31009	0.00000
C	-0.42230	0.29288	0.00000
C	-0.44349	0.31479	0.00000
C	-0.48640	0.29540	0.00000

C	-0.50967	0.25191	0.00000
C	-0.48930	0.22906	0.00000
C	-0.44633	0.24921	0.00000
C	-0.22381	0.57937	0.00000
N	-0.21147	0.55249	-0.00000
C	0.01961	-0.02324	0.00000
C	0.04355	0.02026	0.00000
C	-0.04812	-0.08922	0.00000
C	-0.09181	-0.10964	0.00000
C	-0.11484	-0.15234	0.00000
C	-0.09567	-0.17648	0.00000
C	-0.05228	-0.15666	0.00000
C	-0.02936	-0.11373	0.00000
N	-0.12124	-0.21907	0.00000
N	-0.25224	0.13456	0.00000
S	-0.27306	0.07896	0.00000
N	-0.22332	0.08183	0.00000
H	-0.19188	-0.28426	0.00000
H	-0.23995	0.64113	0.00000
H	-0.07476	-0.23584	0.00000
H	-0.37464	0.25725	0.00000
H	-0.42638	0.34843	0.00000
H	-0.50156	0.31415	0.00000

H	-0.50689	0.19568	0.00000
H	-0.43268	0.22947	0.00000
H	-0.25730	0.57041	0.00000
H	0.03527	-0.04172	0.00000
H	-0.10874	-0.09280	0.00000
H	-0.14798	-0.16778	0.00000
H	-0.03517	-0.17319	0.00000
H	0.00413	-0.09899	0.00000
C	1.15394	0.36129	0.50000
C	1.12631	1.31836	0.50000
C	1.13931	1.28974	0.50000
C	1.18349	1.30369	0.50000
C	1.21191	0.34871	0.50000
C	1.19634	0.37745	0.50000
C	1.22530	0.42128	0.50000
C	0.97724	0.95728	0.50000
C	1.02009	0.97676	0.50000
C	0.91086	0.95947	0.50000
C	0.88974	0.98146	0.50000
C	0.84677	0.96202	0.50000
C	0.82389	0.91851	0.50000
C	0.84430	0.89574	0.50000
C	0.88708	0.91580	0.50000

C	1.10954	1.24584	0.50000
N	1.12170	1.21890	0.50000
C	1.35294	0.64340	0.50000
C	1.37678	0.68673	0.50000
C	1.28532	0.57778	0.50000
C	1.24168	0.55703	0.50000
C	1.21854	0.51410	0.50000
C	1.23767	0.48994	0.50000
C	1.28116	0.51011	0.50000
C	1.30394	0.55305	0.50000
N	1.21172	0.44719	0.50000
N	1.08094	0.80135	0.50000
S	1.06025	0.74576	0.50000
N	1.10991	0.74850	0.50000
H	1.14157	0.38229	0.50000
H	1.09338	1.30775	0.50000
H	1.25865	0.43062	0.50000
H	0.95867	0.92396	0.50000
H	0.90729	1.01523	0.50000
H	0.83202	0.98087	0.50000
H	0.82667	0.86253	0.50000
H	0.90078	0.89625	0.50000
H	1.07608	1.23698	0.50000

\mathbf{H}	1.36867	0.62497	0.50000
\mathbf{H}	1.22450	0.57371	0.50000
\mathbf{H}	1.18510	0.49861	0.50000
\mathbf{H}	1.29817	0.49313	0.50000
\mathbf{H}	1.33733	0.56735	0.50000

Table S6. Atomic coordinates of AA-stacking mode of TAPT-BT-COF using DFTB+ method.

	Space group: P6$\begin{gathered} a=37.4830 \AA, b=37.4830 \AA \text {, and } c=3.4950 \AA . \\ \alpha=\beta=90^{\circ}, \text { and } \gamma=120^{\circ} \end{gathered}$		
	X	Y	Z
C	1.55903	-0.91161	-0.50000
N	1.31079	-0.37541	-0.50000
C	1.35239	-0.35542	-0.50000
C	1.24632	-0.37366	-0.50000
C	1.22527	-0.35120	-0.50000
C	1.18235	-0.37103	-0.50000
C	1.15810	-0.41462	-0.50000
C	1.17920	-0.43715	-0.50000
C	1.22211	-0.41713	-0.50000
C	1.51471	-0.02916	-0.50000
C	1.54359	0.01507	-0.50000

C	1.52911	0.04424	-0.50000
C	1.48660	0.02844	-0.50000
C	1.45841	-0.01441	-0.50000
C	1.47107	-0.04382	-0.50000
C	1.44140	-0.08806	-0.50000
N	1.45318	-0.11527	-0.50000
N	1.68629	-0.68921	-0.50000
C	1.70784	-0.64747	-0.50000
C	1.61999	-0.75369	-0.50000
C	1.57647	-0.77477	-0.50000
C	1.55365	-0.81769	-0.50000
C	1.57299	-0.84187	-0.50000
C	1.61664	-0.82078	-0.50000
C	1.63930	-0.77785	-0.50000
N	1.54692	-0.88467	-0.50000
N	1.41537	-0.53080	-0.50000
S	1.39318	-0.58637	-0.50000
N	1.44305	-0.58350	-0.50000
H	1.59237	-0.90329	-0.50000
H	1.24291	-0.31730	-0.50000
H	1.16660	-0.35291	-0.50000
H	1.16211	-0.47098	-0.50000
H	1.23736	-0.43571	-0.50000

\mathbf{H}	1.47495	0.05010	-0.50000
\mathbf{H}	1.42523	-0.02462	-0.50000
\mathbf{H}	1.40800	-0.09632	-0.50000
\mathbf{H}	1.56021	-0.75711	-0.50000
\mathbf{H}	1.51977	-0.83326	-0.50000
\mathbf{H}	1.63328	-0.83796	-0.50000
\mathbf{H}	1.67315	-0.76262	-0.50000

Table S7. Atomic coordinates of staggered AB-stacking mode of TAPT-BT-COF using DFTB+ method.

	Space group: P6$\begin{gathered} a=37.4830 \AA, b=37.4830 \AA \text {, and } c=3.4950 \AA . \\ \alpha=\beta=90^{\circ}, \text { and } \gamma=120^{\circ} \end{gathered}$		
	X	Y	Z
C	-0.10751	-0.24423	0.50000
N	-0.35590	0.29123	0.50000
C	-0.31430	0.31133	0.50000
C	-0.42007	0.29309	0.50000
C	-0.44107	0.31561	0.50000
C	-0.48398	0.29556	0.50000
C	-0.50805	0.25194	0.50000
C	-0.48697	0.22930	0.50000
C	-0.44404	0.24961	0.50000

C	-0.15175	0.63740	0.50000
C	-0.12247	-0.31788	0.50000
C	-0.13711	-0.28865	0.50000
C	-0.17978	-0.30518	0.50000
C	-0.20801	0.65179	0.50000
C	-0.19577	0.62215	0.50000
C	-0.22596	0.57789	0.50000
N	-0.21403	0.55090	0.50000
N	0.01961	-0.02250	0.50000
C	0.04099	0.01910	0.50000
C	-0.04634	-0.08659	0.50000
C	-0.08982	-0.10734	0.50000
C	-0.11274	-0.15024	0.50000
C	-0.09335	-0.17445	0.50000
C	-0.04960	-0.15352	0.50000
C	-0.02689	-0.11058	0.50000
N	-0.11970	-0.21738	0.50000
N	-0.25143	0.13533	0.50000
S	-0.27385	0.07962	0.50000
N	-0.22378	0.08278	0.50000
H	-0.07422	-0.23564	0.50000
H	-0.42318	0.34954	0.50000
H	-0.49970	0.31373	0.50000

H	-0.50423	0.19540	0.50000
H	-0.42834	0.23139	0.50000
H	-0.19222	-0.28408	0.50000
H	-0.24115	0.64165	0.50000
H	-0.25935	0.56948	0.50000
H	-0.10570	-0.08929	0.50000
H	-0.14662	-0.16588	0.50000
H	-0.03296	-0.17076	0.50000
H	0.00704	-0.09489	0.50000
C	1.22575	0.42230	1.00000
N	0.97743	0.95790	1.00000
C	1.01901	0.97801	1.00000
C	0.91337	0.95981	1.00000
C	0.89244	0.98238	1.00000
C	0.84952	0.96232	1.00000
C	0.82547	0.91868	1.00000
C	0.84654	0.89603	1.00000
C	0.88948	0.91633	1.00000
C	1.18152	1.30395	1.00000
C	1.21082	0.34866	1.00000
C	1.19618	0.37788	1.00000
C	1.15352	0.36137	1.00000
C	1.12528	1.31835	1.00000

C	1.13751	1.28869	1.00000
C	1.10731	1.24442	1.00000
N	1.11919	1.21740	1.00000
N	1.35294	0.64417	1.00000
C	1.37436	0.68578	1.00000
C	1.28694	0.57998	1.00000
C	1.24344	0.55915	1.00000
C	1.22050	0.51624	1.00000
C	1.23986	0.49203	1.00000
C	1.28360	0.51297	1.00000
C	1.30633	0.55591	1.00000
N	1.21352	0.44911	1.00000
N	1.08183	0.80206	1.00000
S	1.05940	0.74635	1.00000
N	1.10947	0.74949	1.00000
H	1.25907	0.43094	1.00000
H	0.91035	1.01631	1.00000
H	0.83381	0.98049	1.00000
H	0.82929	0.86213	1.00000
H	0.90519	0.89814	1.00000
H	1.14112	0.38252	1.00000
H	1.09215	1.30825	1.00000
H	1.07393	1.23606	1.00000

\mathbf{H}	1.22754	0.57718	1.00000
\mathbf{H}	1.18663	0.50060	1.00000
\mathbf{H}	1.30025	0.49572	1.00000
\mathbf{H}	1.34025	0.57158	1.00000

Section 18. Supporting References

S1. M. Li, H. Zhang, Y. Zhang, B. Hou, C. Li, X. Wang, J. Zhang, L. Xiao, Z. Cui and Y. Ao, J. Mater. Chem. C, 2016, 4, 9094.

S2. M. G. Schwab, M. Hamburger, X. Feng, J. Shu, H. W. Spiess, X. Wang, M. Antonietti and K. Müllen, Chem. Commun., 2010, 46, 8932.

S3. P. Bhanja, K. Bhunia, S. K. Das, D. Pradhan, R. Kimura, Y. Hijikata, S. Irle and A. Bhaumik, ChemSusChem, 2017, 10, 921-929.

S4. L.-H. Li, X.-L. Feng, X.-H. Cui, Y.-X. Ma, S.-Y. Ding and W. Wang, J. Am. Chem. Soc., 2017, 139, 6042.

S5. C. M. Cardona, W. Li, A. E. Kaifer, D. Stockdale and G. C. Bazan, Adv. Mater., 2011, 23, 2367.

S6. Y.-Z. Yan, Q.-D. An, Z.-Y. Xiao, S.-R. Zhai, B. Zhai and Z. Shi, J. Mater. Chem. A, 2017, 5, 17073.

S7. H. Abdullah and D.-H. Kuo, ACS Appl. Mater. Inter., 2015, 7, 26941.
S8. V. Kostas, M. Baikousi, K. Dimos, K. C. Vasilopoulos, I. Koutselas and M. A. Karakassides, J. Phys. Chem. C 2017, 2017, 121, 7303.

S9. S. Ghasimi, S. Prescher, Z. J. Wang, K. Landfester, J. Yuan and K. A. I. Zhang, Angew. Chem. Int. Ed., 2015, 54, 14549.

S10. W. Huang, N. Liu, X. Zhang, M. Wu and L. Tang, Appl. Surf. Sci., 2017, 425, 107.
S11. H. Zhao, Q. Xia, H. Xing, D. Chen and H. Wang, ACS Sustainable Chem. Eng., 2017, 5, 4449.

S12. L. Shen, W. Wu, R. Liang, R. Lin and L. Wu, Nanoscale, 2013, 5, 9374.

S13. L. Shen, L. Huang, S. Liang, R. Liang, N. Qin and L. Wu, RSC Adv., 2014, 4, 2546.

S14. R. Liang, L. Shen, F. Jing, W. Wu, N. Qin, R. Lin and L. Wu, Applied Catalysis B: Environmental, 2015, 162, 245.

S15. H. Zheng, P. Li, L. Gao and G. Li, RSC Adv., 2017, 7, 25725.
S16. W. Yang, L. Zhang, Y. Hu, Y. Zhong, H. B. Wu and X. W. Lou, Angew. Chem. Int. Ed., 2012, 51, 11501.

S17.Q. Liu, B. Zhou, M. Xu and G. Mao, RSC Adv., 2017, 7, 8004.
S18. Z. Luo, J. Wang, L. Qu, J. Jia, S. Jiang, X. Zhou, X. Wu and Z. Wu, New J. Chem., 2017, 41, 12596.

S19. X. Gao, H. B. Wu, L. Zheng, Y. Zhong, Y. Hu and X. W. Lou, Angew. Chem. Int. Ed., 2014, 53, 5917.

