Supporting Information

Rocking-chair Na-ion hybrid capacitor: a high energy/power system based on Na₃V₂O₂(PO₄)₂F@PEDOT core-shell nanorods

Langyuan Wu,^a Shengyang Dong,^a Gang Pang,^b Hongsen Li,^a Chengyang Xu,^a Yadi

Zhang,^a Hui Dou^a and Xiaogang Zhang,^{*a}

^aJiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Materials Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P.R. China

^bSchool of Material Science & Engineering and Anhui Key Laboratory of Metal Materials and Processing, Anhui University of Technology, Maanshan, 243002, P. R. China

Fig. S1 Comparison of the XRD patterns of $Na_3V_2O_2(PO_4)_2F$ before calcination, $Na_3V_2O_2(PO_4)_2F$ and $Na_3V_2O_2(PO_4)_2F$ @PEDOT.

Fig. S2 XPS (a) C 1s (b) S 2p spectra of $Na_3V_2O_2(PO_4)_2F@PEDOT$.

Fig. S3 TG curves of NVOPF and NVOPF@PEDOT.

Fig. S4 (a) GCD curves of NVOPF and (b) PEDOT in 1 M NaClO₄ in EC/PC (1:1 in v/v) with 5 vol % FEC as the additive.

Fig. S5 XPS V 2p_{3/2} spectra of NVOPF@PEDOT at different SOCs.

Fig. S6 GCD curves of NVOPF@PEDOT in 1 M NaClO₄ in EC/PC (1:1 in v/v).

J. M. Tarascon *et al.* reported that two major effects regarding the addition of FEC in Na half-cells emerge. One regards the enhanced efficiency of the cathode's first cycle by lowering the irreversible capacity and the other one deals with increase polarization

penalty generated in two-electrode configuration. Some resistive layer grows at OCV on a half-cell with Na counter electrode before testing starts which limits the mass transfer from the counter electrode to the electrolyte ¹.

Fig. S7 CV curves of NVOPF@PEDOT.

Fig. S8 The 44th cycle of GCD curves of NVOPF@PEDOT in rate test.

Fig. S9 EIS of NVOPF and NVOPF@PEDOT electrodes.

Fig. S10 Different magnification SEM images of the NVOPF@PEDOT electrode after 20 cycle at 1C.

Fig. S11 SEM images of peanut shell derived carbon.

Fig. S12 (a) Nitrogen adsorption-desorption isotherm of peanut shell derived carbon.(b) Pore size distribution of peanut shell derived carbon.

Fig. S13 (a-c) Electrochemical properties of AC (peanut shell derived carbon) in half cells: (a) CV curves at various scan rates from 1.0 to 5.0 mV s⁻¹. (b) GCD curves of the AC at 0.1 A g^{-1} . (c) Rate capabilities of AC at various current rates from 0.1 A g^{-1} to 5 A g^{-1} .

Fig. S14 CV curves at various scan rates from 1.0 to 5.0 mV s⁻¹ of NVOPF@PEDOT//AC.

Fig. S15 Specific capacity of NVOPF@PEDOT//AC at different current density.

	Electrolyte	Rate	Cycle life
		capability	(corresponded
		(mA h g ⁻¹)	capacity
			retention)
Na ₃ V ₂ O ₂ (PO ₄) ₂ F@PEDOT	1M NaClO ₄ in	73 at 10C	8000 at 5C
(present work)	EC:PC+5%FEC		(83.8%)
Na ₃ V ₂ O ₂ (PO ₄) ₂ F@carbon/graphene ²	1M NaClO ₄ in	78.5 at	40 at 1C
	EC:DMC	10C	(98.9%)
Na ₃ V ₂ O ₂ (PO ₄) ₂ F/C ³	1 M NaPF ₆ in	30 at 5C	
	EC:PC		
Na ₃ V ₂ O ₂ (PO ₄) ₂ F-nano-tetraprisms ⁴	1M NaClO ₄ in	81 at 10C	1500 at 1C
	PC+5%FEC in		(94.6%)
	the P(VDF-HFP)		
Na ₃ V ₂ O ₂ (PO ₄) ₂ F/graphene ⁵	1 M NaPF ₆ in	40 at 10C	200 at 0.1C
	EC:DEC		(91.4%)
Na ₃ (VO _{1-x} PO ₄) ₂ F _{1+2x} (0 $\leq x \leq 1$)	1M NaClO ₄ in	73 at 10C	1200 at 2C
nanoparticles ⁶	EC:DEC+2%FEC		(90%)

 Table S1 The sodium storage properties for reported NVOPF half cells.

Reference:

- 1 R. Dugas, A. Ponrouch, G. Gachot, R. David, M.R. Palacin, J.M. Tarascon, J. Electrochem. Soc. 2016, 163, A2333.
- 2 H. Jin, J. Dong, E. Uchaker, Q. Zhang, X. Zhou, S. Hou, J. Li, G. Cao, J. Mater. Chem. A 2015, 3, 17563.
- 3 P. Serras, V. Palomares, P. Kubiak, L. Lezama, T. Rojo, Electrochem. Commun. 2013, 34, 344.
- 4 J.-Z. Guo, A.-B. Yang, Z.-Y. Gu, X.-L. Wu, W.-L. Pang, Q.-L. Ning, W.-H. Li, J.-P. Zhang, Z.-M. Su, *ACS Appl. Mater. Interfaces* 2018, **10**, 17903.
- 5 M. Xu, L. Wang, X. Zhao, J. Song, H. Xie, Y. Lu, J.B. Goodenough, Phys. Chem. Chem. Phys. 2013, 15, 13032.
- 6 Y. Qi, L. Mu, J. Zhao, Y.-S. Hu, H. Liu, S. Dai, Angew. Chem. Int. Ed. 2015, 54, 9911.