Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2018

Supporting Information

Abundant grain boundaries activate highly efficient lithium ion transportation in

high rate Li₄Ti₅O₁₂ compact microspheres

Jiaming Ma^{a, b}, Yinping Wei^a, Lin Gan^a, Chao Wang^c, Heyi Xia^{a, b}, Wei Lv^a, Jia Li

^a, Baohua Li^a, Quan-Hong Yang^d, Feiyu Kang ^{a, b} and Yan-Bing He^{a,*}

^a Engineering Laboratory for the Next Generation Power and Energy Storage Batteries, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China.

^b Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084, PR China.

^c Department of Radiation Science and Technology, Delft University of Technology, Mekelweg 15, Delft 2629 JB, The Netherlands

^d Nanoyang Group, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China

* Corresponding author. E-mail address: he.yanbing@sz.tsinghua.edu.cn (Y.-B. He)

Fig. S1 Scanning electron microscope (SEM) images of (a, b) LTO-40% ethanol, (c, d) LTO-70% ethanol, respectively.

Fig. S2 SEM images of TiO_2/Li^+ precursors using (a) 40% ethanol, (b) 50% ethanol, (c) 60% ethanol and (d) 70% ethanol.

Fig. S3 TEM images of (a) LTO-50% ethanol and (b) LTO-60% ethanol.

Fig. S4 Thermogravimetric analysis of (a) LTO-50% ethanol and (b) LTO-60% ethanol annealed at 800 °C.

Fig. S5 Cyclic voltammetry (CV) curves of LTO-50% ethanol and (b) LTO-60% ethanol.

Fig. S6 Electrochemical properties of LTO-40% and LTO-70%: (a) specific capacities at different C rates, (b) cycle performance at a rate of 5 C.

Fig. S7 In-situ XRD collected during the first charge/discharge of the LTO-60% ethanol under a current rate of (a) 0.1 C and (b) 0.5 C between 1.0 and 2.5 V.

Fig. S8 EELS spectra of the different SOC sample. The Li-K edge was assigned as the peaks of around 61 eV.

Fig. S9 STEM images of LTO-60% ethanol microspheres at different state of charge (SOC) in a higher magnification: (a) 0% (pristine LTO), (b) 60%, (c) 80%, and EELS mapping of the 80% SOC (d) was collected.

Table S1. Summary of electrochemical performance of high tap density LTO and	ode in
this work and other low tap density LTO anodes.	

Reference	Morphology	Tap density (g cm ⁻³)	Rate performance (mA h g ⁻¹)	Cycling rate, Cycling number, Capacity retention
This work	Microspheres	1.23	5C: 146.6	5C, 500 cycles,
			10C: 138.2	97.8%
			20C: 111	
1	Porous particles ¹	No mention	5C: 145	2C, 2200 cycles,
			10C: 129	83%
2	Hollow spheres ²	No mention	5C: 128	5C, 300 cycles,
			10C: 115	88%
			20C: 104	
3	Mesoporous	No mention	10C: 133.1	1C, 600 cycles,
	hierarchical		20C: 126.9	92%
	structure ³			

4	Mesoporous	0.81	10C: 136	4C, 200 cycles,
	microspheres4		30C: 114	94.5%;
				20C, 200 cycles,
				125.3 mA h g-1
5	Hollow	No mention	20C: 140.8	20C, 100 cycles,
	microspheres ⁵			92.8%
6	Fibers ⁶	No mention	5C: 126	0.5C, 100 cycles,
			10C: 118	98.2%;
7	Nanotube arrays ⁷	No mention	30C: 135	10C, 500 cycles,
			60C: 105	93%;

References

- 1. L. Zhao, Y.S. Hu, H. Li, Z. Wang and L. Chen, *Adv. Mater.*, 2011, **23**, 1385-1388.
- 2. L. Yu, H.B. Wu and X.W. Lou, *Adv. Mater.*, 2013, **25**, 2296-2300.
- 3. H. Yan, W. Yao, R. Fan, Y. Zhang, J. Luo and J. Xu, *ACS Sustain. Chem. Eng.*, 2018, **6**, 11360-11366.
- 4. Y. Tang, L. Yang, Z. Qiu and J. Huang, *J. Mater. Chem.*, 2009, **19**, 5980-5984.
- 5. Z. Zhang, G. Li, H. Pengand K. Chen, J. Mater. Chem. A., 2013, 1, 15429.
- 6. H. Xu, X. Hu, W. Luo, Y. Sun, Z. Yang, C. Hu and Y. Huang, *Chem. Electro. Chem.*, 2014, 1, 611-616.
- 7. J. Liu, K. Song, P.A. van Aken, J. Maier and Y. Yu, *Nano Lett.*, 2014, 14, 2597-2603.