## Coral-like Ni<sub>x</sub>Co<sub>1-x</sub>Se<sub>2</sub> for Na-ion battery with ultralong cycle life and ultrahigh rate capability

Yanyan He,<sup>a,d</sup> Ming Luo,<sup>a</sup> Caifu Dong,<sup>a</sup> Xuyang Ding,<sup>a</sup> Chaochuang Yin,<sup>c</sup> Anmin Nie,<sup>e</sup>

Yanan Chen,\*c Yitai Qian <sup>a</sup> and Liqiang Xu\*a, b

<sup>a</sup> Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
<sup>b</sup> Shenzhen Research Institute of Shandong University, Rm A301, Virtural University Park, Nanshan, Shenzhen 518057, Guangdong Province, China
\*E-mail: <u>xulq@sdu.edu.cn</u>
<sup>c</sup> School of Life Sciences, Tsinghua University, Beijing, 100084, China
<sup>d</sup> Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, People's Republic of China.E-mail: <u>yananchen@tsinghua.edu.cn</u>
<sup>e</sup> State Key Lab of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, China



Fig. S1 Large area SEM image of Ni<sub>0.47</sub>Co<sub>0.53</sub>Se<sub>2</sub> micro-nanosphere.



Fig. S2 Energy dispersive spectrometer (EDS) analysis of  $Ni_{0.47}Co_{0.53}Se_2$  micro-nanosphere.



Fig. S3 SEM images of  $Ni_xCo_{1-x}Se_2$  with different ratios of Ni and Co. (A<sub>1</sub>-A<sub>3</sub>) Ni<sub>0.72</sub>Co<sub>0.28</sub>Se<sub>2</sub>, (B<sub>1</sub>-B<sub>3</sub>) Ni<sub>0.67</sub>Co<sub>0.33</sub>Se<sub>2</sub>, (C<sub>1</sub>-C<sub>3</sub>) Ni<sub>0.31</sub>Co<sub>0.69</sub>Se<sub>2</sub>, (D<sub>1</sub>-D<sub>3</sub>) Ni<sub>0.79</sub>Co<sub>0.21</sub>Se<sub>2</sub> and (E<sub>1</sub>-E<sub>3</sub>) Ni<sub>0.17</sub>Co<sub>0.83</sub>Se<sub>2</sub>.



Fig. S4 TEM images of  $Ni_xCo_{1-x}Se_2$  with different ratios of Ni and Co. (A<sub>1</sub>-A<sub>3</sub>)  $Ni_{0.72}Co_{0.28}Se_2$ , (B<sub>1</sub>-B<sub>3</sub>)  $Ni_{0.67}Co_{0.33}Se_2$ , (C<sub>1</sub>-C<sub>3</sub>)  $Ni_{0.31}Co_{0.69}Se_2$ , (D<sub>1</sub>-D<sub>3</sub>)  $Ni_{0.79}Co_{0.21}Se_2$  and (E<sub>1</sub>-E<sub>3</sub>)  $Ni_{0.17}Co_{0.83}Se_2$ .



Fig. S5 Energy dispersive spectrometer (EDS) analysis of (a)  $Ni_{0.67}Co_{0.33}Se_2$ , (b)  $Ni_{0.79}Co_{0.21}Se_2$ , (c)  $Ni_{0.17}Co_{0.83}Se_2$  and (d)  $Ni_{0.23}Co_{0.77}Se_2$ .

| Samples                                               | Contents of Co (mg/L) | Contents of Ni (mg/L) |
|-------------------------------------------------------|-----------------------|-----------------------|
| Ni <sub>0.17</sub> Co <sub>0.83</sub> Se <sub>2</sub> | 4.071                 | 0.859                 |
| Ni <sub>0.23</sub> Co <sub>0.77</sub> Se <sub>2</sub> | 4.087                 | 1.212                 |
| $Ni_{0.31}Co_{0.69}Se_2$                              | 6.125                 | 2.727                 |
| Ni <sub>0.47</sub> Co <sub>0.53</sub> Se <sub>2</sub> | 4.915                 | 4.345                 |
| Ni <sub>0.72</sub> Co <sub>0.28</sub> Se <sub>2</sub> | 2.063                 | 5.187                 |
| Ni <sub>0.79</sub> Co <sub>0.21</sub> Se <sub>2</sub> | 1.303                 | 4.761                 |

Table S1. The ICP-OES analysis results of Ni<sub>x</sub>Co<sub>1-x</sub>Se<sub>2</sub> with different ratios of Ni/Co.



**Fig. S6** (a-c) TEM images of Ni-Co based precursor. (d-f) SEM images, (g, h) TEM image and (i) Elemental mappings and EDS spectrum of hierarchical NiSe<sub>2</sub> micro-nanospheres.

| Element | Weight% | Atomic% |
|---------|---------|---------|
| СК      | 12.12   | 42.70   |
| ок      | 2.52    | 6.67    |
| Ni K    | 26.28   | 18.95   |
| Se L    | 59.08   | 31.68   |
| Totals  | 100.00  |         |

Fig. S7 Energy dispersive spectrometer (EDS) analysis of NiSe<sub>2</sub> micro-nanosphere.

Fig. S6 (a-c) show the TEM images of Ni based precursor, it presents micro-nanosphere morphology with size of  $3\sim4$  µm, which is composed of thin nanosheet structures. The SEM images (Fig. S6d-f) indicate the micro-nanostructure still preserves its integrated nature ( $3\sim4$  µm), however, the nanosheets in the precursor have transformed to nanoparticles after selenization process, and the size of nanoparticles are ~100 nm. Fig. S6g and Fig. S6h shows the TEM images of the nanoparticles dropped from the micro-nanosphere, which further deliver the size of nanoparticles are ~100 nm. In addition, the Elemental mapping (Fig. S6i) indicates the coexistence of Ni and Se in the micro-nanosphere and the EDS analysis (Fig. S7) presents a Ni/Se mole ratio of ~1:2 for hierarchical NiSe<sub>2</sub> micro-nanosphere.



**Fig. S8** Rate performances of  $Ni_{0.47}Co_{0.53}Se_2$  and  $NiSe_2$  materials. The units of the current densities are (a) C-rate and (b) A cm<sup>-2</sup>, respectively.



**Fig. S9** (a, b) SEM images and (c) elemental mapping of  $Ni_{0.47}Co_{0.53}Se_2$  material after 50 cycles at a current density of 1 A g<sup>-1</sup>.

| Table S2. The comparison of electrochemical performances between the hierarchical             |
|-----------------------------------------------------------------------------------------------|
| $Ni_{0.47}Co_{0.53}Se_2$ micro-nanosphere electrodes with the reported nickel/cobalt selenide |
| related electrodes when applied as anode materials for SIBs.                                  |

|                                                | Specific capacity,                    | Specific capacity,                | Ref.  |
|------------------------------------------------|---------------------------------------|-----------------------------------|-------|
| Materials                                      | mAh g <sup>-1</sup> /Cycle numbers,   | mAh g <sup>-1</sup> /High current |       |
|                                                | (Current density, A g <sup>-1</sup> ) | density, A g <sup>-1</sup>        |       |
| Graphene-wrapped                               | 468/100 <sup>th</sup> , (0.2)         | 269/2                             | [1]   |
| NiSe <sub>2</sub> /C nanofiber                 |                                       | 243/3                             |       |
| Nico. / CO hybrid                              | 346/1000 <sup>th</sup> , (1)          | 347/2                             | [2]   |
| NISe2/100 Hydrid                               |                                       | 318/5                             |       |
| NiSe <sub>2</sub> nanooctahedra                | 313/4000 <sup>th</sup> , (5)          | < 200/15<br>175/20                | [3]   |
| Square NiSe <sub>2</sub>                       | and the other (1)                     | 249/5                             | E 4 1 |
| nanoplates                                     | $311/100^{\rm m}$ , (1)               | 213/10                            | [4]   |
| MoSe <sub>2</sub> -NiSe-C                      | 386/80 <sup>th</sup> , (0.5)          |                                   | [5]   |
| composite                                      |                                       | 301/3                             |       |
| microsphere                                    |                                       |                                   |       |
| Ni <sub>0.85</sub> Se/C hollow                 | 390/100 <sup>th</sup> , (0.83)        | 219/2.1                           | [6]   |
| nanowires                                      |                                       | 172/4.2                           |       |
| core-shell NiSe/C                              | and rath (a.1)                        | 235/0.2                           | [7]   |
| nanospheres                                    | 280/50 <sup></sup> , (0.1)            | 186/0.5                           |       |
| Hollow Cobalt                                  |                                       |                                   |       |
| Selenide Microspheres                          | ~425/40 <sup>th</sup> , (0.5)         | 466/0.9                           | [8]   |
| CoSe <sub>x</sub> -rGO                         | 226/50th (0.2)                        | 357/1                             | [9]   |
| Composite                                      | ~550/50 , (0.5)                       |                                   |       |
| Yolk-Shell-Structured                          |                                       |                                   |       |
| CoSe/C                                         | 536/50 <sup>th</sup> , (0.5)          | 361.9/16                          | [10]  |
| Ultrathin Co <sub>9</sub> Se <sub>8</sub> /rGO |                                       |                                   |       |
| Hybrid Nanosheets                              | 406/100 <sup>th</sup> , (0.05)        | 295/5                             | [11]  |
| CoSe <sub>2</sub> /(NiCo)Se <sub>2</sub>       |                                       |                                   |       |
| hollow nanocubes                               | 497/80 <sup>th</sup> , (0.2)          | 456/5                             | [12]  |
| Our work                                       |                                       | 360.2/5                           |       |
| (hierarchical                                  | 321/2000 <sup>th</sup> , (2)          | 324.5/10                          |       |
| Ni0.47C00.53Se2                                |                                       | 277/15                            |       |
| micro-nanosphere)                              |                                       |                                   |       |



Fig. S10 The cycle performances of  $Ni_xCo_{1-x}Se_2$  with different ratios of Ni/Co at current density of 1 A g<sup>-1</sup> in ether-based electrolyte (1M CF<sub>3</sub>NaSO<sub>3</sub> in DEGDME).



**Fig. S11** (a) Cycle performances at current densities of 0.5 and 1 A  $g^{-1}$ , and (b) rate performance of hierarchical Ni<sub>0.47</sub>Co<sub>0.53</sub>Se<sub>2</sub> micro-nanospheres electrode in carbonate-based electrolyte (1M NaClO<sub>4</sub> in EC/DEC).



**Fig. S12** CV curves of the hierarchical NiSe<sub>2</sub> micro-nanosphere electrode with scan rate of 0.1 mV s<sup>-1</sup> for SIBs. (The insert one is the first cycle curve).

During the first discharge process, the reduction peaks located at 1.23 V and 0.99 V, might correspond to the insertion of Na<sup>+</sup> into NiSe<sub>2</sub> and resulting the conversion reaction to form Na<sub>2</sub>Se and metallic Ni nanocrystals (NiSe<sub>2</sub> + 4Na<sup>+</sup> + 4e<sup>-</sup> $\rightarrow$  Ni+ 2Na<sub>2</sub>Se)<sup>1,2,7</sup>. During the first charge process, the weak oxidation peak located at 1.83 V and the sharp oxidation peaks located at 1.91 V might be attributed to the deintercalation of Na<sup>+</sup> and the recovery of NiSe<sub>2</sub> from Na<sub>2</sub>Se and metallic Ni nanocrystals (Ni + 2Na<sub>2</sub>Se $\rightarrow$ NiSe<sub>2</sub>)<sup>1,2,7</sup>. In the second cycle, the position of reduction peaks shifted to higher potentials, which might be related to the formation of ultrafine nanocrystals during the first cycle.

## Reference

- 1. J. S. Cho, S. Y. Lee and Y. C. Kang, Sci. Rep., 2016, 6, 23338-22510.
- X. Ou, J. Li, F. H. Zheng, P. Wu, Q. C. Pan, X. H. Xiong, C. H. Yang and M. L. Liu, J. Power. Sources, 2017, 343, 483-491.
- S. H. Zhu, Q. D. Li, Q. L. Wei, R. M. Sun, X. Q. Liu, Q. Y. An and L. Q. Mai, ACS Appl. Mater. Interfaces, 2017, 9, 311-316.
- H. S. Fan, H. Yu, X. L. Wu, Y. Zhang, Z. Z. Luo, H. W. Wang, Y. Y. Guo, S. Madhavi and Q. Y. Yan, ACS Appl. Mater. Interfaces, 2016, 8, 25261-25267.
- 5. J. S. Park and Y. C. Kang, J. Mater. Chem. A, 2017, 5, 8616-8623.

- X. M. Yang, J. L. Zhang, Z. G. Wang, H. K. Wang, C. Y. Zhi, D. Y. W. Yu and A. L. Rogach, *Small*, 2018, 14, 1702669.
- 7. Z. A. Zhang, X. D. Shi and X. Yang, *Electrochimi. Acta*, 2016, **208**, 238-243.
- Y. N. Ko, S. H. Choi and Y. C. Kang, ACS Appl. Mater. Interfaces, 2016, 8, 6449-6456.
- 9. G. D. Park and Y. C. Kang, *Chem. Eur. J.*, 2016, 22, 4140-4146.
- Y. F. Zhang, A. Q. Pan, L. Ding, Z. L. Zhou, Y. P. Wang, S. Y. Niu, S. Q. Liang and G. Z. Cao, ACS Appl. Mater. Interfaces, 2017, 9, 3624-3633.
- X. F. Wang, D. Z. Kong, Z. X. Huang, Y. Wang and H. Y. Yang, *Small*, 2017, 13, 1603980.
- 12. S. K. Park, J. K. Kim, and Y. C. Kang, J. Mater. Chem. A, 2017, 5, 18823-18830.