Electronic Supplementary Information

Ultrahigh energy density of a N, O codoped carbon nanosphere based all-solid-state symmetric supercapacitor

Ziyang Song,^a Dazhang Zhu,^a Liangchun Li,^{*a} Tao Chen,^a Hui Duan,^a Zhiwei Wang,^b Yaokang Lv,^c Wei Xiong,^d Mingxian Liu,^{*a} and Lihua Gan^{*a}

^a Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China.

^b State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, P. R. China.

^c College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.

^d key Laboratory for Green Chemical Process of Ministry of Education, School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, 693 Xiongchun Road, Wuhan 430073, P. R. China.

*Corresponding Authors

E-mail: lilc@tongji.edu.cn, liumx@tongji.edu.cn, ganlh@tongji.edu.cn

Samples	Effect	Т	Ethanol	10	117	Size	$S_{\rm BET}$	N	0	C_{m}
	factors	(°C)	(mL)	n _{b/d}	W KOH/PNs	(nm)	$(m^2 g^{-1})$	(wt.%)	(wt.%)	$(F g^{-1})$
PCN ₆₀₀	Т	600	200	3	1	380	1620	11.64	10.41	186
PCN ₇₀₀		700	200	3	1	380	2660	10.95	10.37	358
PCN800		800	200	3	1	380	2218	6.15	12.66	267
PCN900		900	200	3	1	380	1527	4.99	8.78	241
PCN-1	Solvent	700	100	3	1	550	1673	8.57	10.78	256
PCN-2		700	150	3	1	510	2144	7.22	9.56	295
PCN-3		700	250	3	1	350	2308	5.76	15.20	275
PCN-4		700	200	1	1	340	2536	6.83	15.62	224
PCN-5	Monomer	700	200	2	1	450	2365	7.89	16.40	279
PCN-6		700	200	6	1	530	2714	5.87	10.45	268
PCN-7	Activation	700	200	3	0	380	433	12.06	16.71	208
PCN-8		700	200	3	0.5	380	1562	11.23	12.48	245
PCN-9		700	200	3	2	380	3112	5.65	9.98	258

Table S1 Synthesis parameters and properties of quinone-amine polymer derived PCNs^a.

^aT: carbonization/activation temperature; $n_{b/d}$: the molar ratio of *p*-benzoquinone to 3, 3'-diaminobenzidine; $W_{KOH/PNs}$: the mass ratio of KOH to polymer nanospheres; S_{BET} : specific surface area; N: nitrogen contents of PCNs; C_m : gravimetric specific capacitance of PCN electrodes measured in three-electrode system at 1 A g⁻¹ using KOH electrolyte.

Scheme S1 Reaction process of 3, 3'-diaminobenzidine and *p*-benzoquinone in ethanol.

Fig. S1 TGA curve of quinone-amine polymer nanospheres in N₂ atmosphere.

Fig. S2 A typical TEM image of PCN₇₀₀.

Fig. S3 (a) XRD patterns and (b) Raman spectra of PCNs.

Table S2 Comparison of surface areas (S_{BET}), nitrogen contents, specific capacitances (C_m) under different current densities (I_m) of reported heteroatom-doped carbon electrodes tested in 6 M KOH on a three-electrode system for supercapacitors in the literatures.

Materials	$\frac{S_{\text{BET}}}{(\text{m}^2 \text{ g}^{-1})}$	N (wt.%)	$C_{\rm m}$ (F g ⁻¹)	$I_{\rm m}$ (A g ⁻¹)	Ref.
N-doped 3D graphene networks	583	15.8	380	0.6	1
Carbon nitride	1356	15.3	372	1	2
N-doped carbon nanocages	1794	7.9	313	1	3
N-doped 2D polymers	594	4.04	233	1	4
N-doped carbon nanosheets	358	5.07	358	0.1	5
N-doped activated carbon	2900	3.98	185	0.4	6
N-doped graphene	_	2.51	280	1	7
N-doped carbon microspheres	1147	2.4	219	1	8
N-doped strutted graphene	1005	1.82	250	1	9
N-doped carbons	329	13.44	374	0.1	10
N-doped porous carbons	2096	7.2	262	0.2	11
N-doped graphene	_	4.2	312	0.1	12
N-doped carbon nanosheets	2494	4.7	242	0.1	13
N-doped carbon nanospheres	631	8.23	146	1	14
N-doped graphdiyne	679	3.67	250	0.2	15
PCN ₇₀₀	2660	10.95	376	0.5	This
			358	1	work

Fig. S4 SEM images of (a) PCN-1, (b) PCN-2 and (c) PCN-3.

Fig. S5 SEM images of (a) PCN-4, (b) PCN-5 and (c) PCN-6.

Fig. S6 (a) N₂ adsorption/desorption isotherms and (b) pore size distribution curves of PCN-1, PCN-2 and PCN-3.

Fig. S7 (a) N₂ adsorption/desorption isotherms and (b) pore size distribution curves of PCN-4,

PCN-5 and PCN-6.

Fig. S8 (a) N₂ adsorption/desorption isotherms and (b) pore size distribution curves of PCN-7, PCN-8 and PCN-9.

Samples	$S_{\rm BET}({\rm m}^2~{\rm g}^{-1})$	$S_{\text{Micropore}} (\text{m}^2 \text{g}^{-1})$	$V_{\text{total}} (\text{cm}^3\text{g}^{-1})$	$V_{\rm micropore}~({\rm cm}^3~{\rm g}^{-1})$
PCN600	1620	1331	0.98	0.62
PCN700	2660	2422	1.54	1.19
PCN800	2218	1938	1.36	0.98
PCN900	1527	1285	1.01	0.70
PCN-1	1673	1389	1.07	0.71
PCN-2	2144	1859	1.21	0.82
PCN-3	2308	2134	1.29	1.01
PCN-4	2536	2264	1.31	1.01
PCN-5	2365	2027	1.38	0.94
PCN-6	2714	2432	1.42	1.09
PCN-7	433	325	0.27	0.14
PCN-8	1562	1118	0.86	0.45
PCN-9	3112	2788	1.63	1.27

Table S3 Pore structure parameters of PCNs.

Fig. S9 (a) Wide-scan XPS spectra and (b–g) the fitted high-solution XPS spectra of O 1s and N 1s for (b, e) PCN-1, (c, f) PCN-2 and (d, g) PCN-3.

Fig. S10 (a) Wide-scan XPS spectra and (b–g) the fitted high-solution XPS spectra of O 1s and N 1s for (b, e) PCN-4, (c, f) PCN-5 and (d, g) PCN-6.

Fig. S11 (a) Wide-scan XPS spectra and (b–g) the fitted high-solution XPS spectra of O 1s and N 1s for (b, e) PCN-7, (c, f) PCN-8 and (d, g) PCN-9.

Samples	С	Ν	0	N-6 (%)	N-5 (%)	N-Q (%)	N-X (%)	0-1 (%)	O-2 (%)	O-3 (%)
	(wt.%)	(wt.%)	(wt.%)	398.2 eV	399.5 eV	400.3 eV	401.6 eV	530.7 eV	532.1 eV	533.6 eV
PCN ₆₀₀	77.94	11.64	10.41	39.92	16.99	24.73	18.36	27.76	46.37	25.87
PCN700	78.68	10.95	10.37	32.59	15.84	26.92	24.65	38.69	38.04	23.27
PCN800	81.19	6.15	12.66	24.22	16.63	30.50	28.65	23.29	40.02	36.69
PCN900	86.23	4.99	8.78	24.41	14.98	38.58	22.03	31.23	41.49	27.28
PCN-1	80.65	8.57	10.78	22.75	23.24	30.76	23.25	47.92	30.43	21.65
PCN-2	83.22	7.22	9.56	24.23	32.21	28.62	14.94	29.17	47.09	23.74
PCN-3	79.04	5.76	15.20	25.16	26.15	30.98	17.71	46.55	31.41	43.27
PCN-4	84.00	6.83	9.17	24.51	21.68	32.97	20.84	48.03	31.09	20.88
PCN-5	75.72	7.89	16.40	31.50	30.61	23.41	14.48	45.51	33.48	21.01
PCN-6	83.67	5.87	10.45	15.76	16.97	35.65	31.62	35.90	39.07	25.02
PCN-7	71.23	12.06	16.71	28.45	17.42	34.75	19.38	52.52	29.74	17.74
PCN-8	76.28	11.23	12.48	24.23	32.21	28.62	14.94	70.64	29.36	_
PCN-9	84.37	5.65	9.98	24.99	19.95	30.05	25.01	35.07	39.93	25.00

Table S4. Elemental compositions, relative contents of N and O species to N 1s and O 1s inPCNs.

Fig. S12 (a) CV curves at 10 mV s⁻¹, (b) GCD curves at 1 A g⁻¹, (c) comparison of capacitances between the samples at different current densities, and (d) Nyquist plots of PCN-1, PCN-2 and PCN-3 electrodes in 6 M KOH electrolyte solution.

Fig. S13 (a) CV curves at 10 mV s⁻¹, (b) GCD curves at 1 A g⁻¹, (c) comparison of capacitances between the samples at different current densities, and (d) Nyquist plots of PCN-4, PCN-5 and PCN-6 electrodes in 6 M KOH electrolyte solution.

Fig. S14 (a) CV curves at 10 mV s⁻¹, (b) GCD curves at 1 A g⁻¹, (c) comparison of capacitances between the samples at different current densities, and (d) Nyquist plots of PCN-7, PCN-8 and PCN-9 electrodes in 6 M KOH electrolyte solution.

Fig. S15 The electrochemical performances of the assembled symmetric two-electrode coin-typed cell based on PCN electrodes and 6 M KOH electrolyte: (a) CV curves at different scann rates from 5 to 50 mV s⁻¹; (b) GCD curves at various current densities from 0.2 to 5 A g^{-1} ; (c) Nyquist plots; (d) Gravimetric capacitances at different current densities; (e) Ragone plots.

References

- 1 W. Zhang, C. Xu, C. Ma, G. Li, Y. Wang, K. Zhang, F. Li, C. Liu, H. M. Cheng, Y. Du, N. Tang, W. Ren, *Adv. Mater.*, 2017, **29**, 1701677.
- 2 J. Xu, F. Xu, M. Qian, F. Xu, Z. Hong, F. Huang, Adv. Mater., 2017, 29, 1701674.
- 3 J. Zhao, H. Lai, Z. Lyu, Y. Jiang, K. Xie, X. Wang, Q. Wu, L. Yang, Z. Jin, Y. Ma, J. Liu, Z. Hu, *Adv. Mater.*, 2015, 27, 3541–3545.
- 4 W. Liu, M. Ulaganathan, I. Abdelwahab, X. Luo, Z. Chen, S. J. Rong Tan, X. Wang, Y. Liu,
 D. Geng, Y. Bao, J. Chen, K. P. Loh, ACS Nano, 2018, 12, 852–860.
- 5 Z. Ling, Z. Wang, M. Zhang, C. Yu, G. Wang, Y. Dong, S. Liu, Y. Wang, J. Qiu, Adv. Funct. Mater., 2016, 26, 111–119.
- 6 B. Li, F. Dai, Q. Xiao, L. Yang, J. Shen, C. Zhang, M. Cai, *Energy Environ. Sci.*, 2016, **9**, 102–106.
- 7 H. M. Jeong, J. W. Lee, W. H. Shin, Y. J. Choi, H. J. Shin, J. K. Kang, J. W. Choi, *Nano Lett.* 2011, **11**, 2472–2477.
- 8 B. Duan, X. Gao, X. Yao, Y. Fang, L. Huang, J. Zhou, L. Zhang, *Nano Energy*, 2016, 27, 482–491.
- 9 X. Wang, Y. Zhang, C. Zhi, X. Wang, D. Tang, Y. Xu, Q. Weng, X. Jiang, M. Mitome, D. Golberg, Y. Bando, *Nat. Commun.*, 2013, 4, 2905.
- 10 J.-S. M. Lee, M. E. Briggs, C.-C. Hu, A. I. Cooper, Nano Energy, 2018, 46, 277-289.
- 11 L. Estevez, R. Dua, N. Bhandari, A. Ramanujapuram, P. Wang, E. P. Giannelis, *Energy Environ. Sci.*, 2013, 6, 1785.
- 12 K. Wang, M. Xu, Y. Gu, Z. Gu, J. Liu, Q. H. Fan, *Nano Energy*, 2017, **31**, 486–494.
- 13 J. Hou, C. Cao, F. Idrees, X. Ma, ACS Nano, 2015, 9, 2556–2564.
- 14 C. Wang, F. Wang, Z. Liu, Y. Zhao, Y. Liu, Q. Yue, H. Zhu, Y. Deng, Y. Wu, D. Zhao, *Nano Energy*, 2017, **41**, 674–680.
- 15 H. Shang, Z. Zuo, H. Zheng, K. Li, Z. Tu, Y. Yi, H. Liu, Y. Li, Y. Li, Nano Energy, 2018, 44, 144–154.