A novel *calendula*-like MnNb₂O₆ anchored on graphene sheet as

high-performance intercalation pseudocapacitive anode for lithium-

ion capacitors

Xu Zhang^a, Jinyu Zhang^a, Shuying Kong^b, Kai Zhu^a, Jun Yan^a Ke Ye^a, Guiling Wang^a,

Kui Cheng^{a, c**}, Limin Zhou^c, Dianxue Cao^{a*}

a. Key Laboratory of Superlight Material and Surface Technology of Ministry of Education, College of Material Science and Chemical Engineering, Harbin

Engineering University, Harbin 150001, China

b. Chongqing Key Laboratory of Special Functional Materials, Yangtze Normal University, Chong Qing 408100, China

c. Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China

Experimental

All the reagents were analytical grade and directly used after purchase without further purification.

Synthesis of 3D MnNb₂O₆@rGO

In a typical preparation, graphene oxide (GO) was prepared from natural graphite by a modified Hummers method^{1, 2}. 0.1 g Nb₂O₅ was added into the KOH solution (0.2 mol L⁻¹, 30 mL) under constant stirring. Then transferring the mixture into a 100 mL Teflon-lined autoclave and heated to 220 °C for 24 h for transforming Nb₂O₅ into $[Nb_6O_{19}]^{8-}$.

^{*} Corresponding author. E-mail address: <u>chengkui@hrbeu.edu.cn</u> (Kui Cheng), <u>caodianxue@hrbeu.edu.cn</u> (Dianxue Cao).

After cooling down naturally, using an appropriate amount of hydrochloric acid adjust the pH \approx 9, and then 10 mL of MnCl₂ (in stoichiometric of Mn: Nb = 1: 2) and GO dispersion (0.1 mg mL⁻¹, 30 mL) were slowly added into above solution under continuous stirring. Transferring the mixed solution into a 100 mL Teflon-lined autoclave and heated to 220 °C for 48 h. Finally, the obtained MnNb₂O₆@rGO was washed repeatedly with ethanol and distilled water, and dried at 80°C under a vacuum. Moreover, the MnNb₂O₆ was prepared following the procedures similar to that of MnNb₂O₆@rGO except the addition of GO solution for comparison.

Characterization

The morphology and structure of MnNb₂O₆@rGO, and MnNb₂O₆ were characterized by scanning electron microscope (SEM, JEOL JSM-6480) and transmission electron microscope (TEM, FEI Teccai G2S-Twin, Philips). The structure of the electrodes was characterized by an X-ray diffractometer (XRD, Rigaku TTR III) equipped with Cu-K α radiation ($\lambda = 0.1514178$ nm) at a scan rate of 5° min⁻¹. Raman spectra were obtained on Renishaw InVia Reflex microscope with an excitation wavelength of 532 nm. The elemental analysis was performed with an elemental analyzer (Vario Micro cube). X-ray Photoelectron Spectroscopy (XPS) was carried out using a ThermoFisher ESCALABTM250Xi equipment to analyze the surface elemental composition of the materials. Thermogravimetric (TG) measurement was carried out to research the composition content of MnNb₂O₆@rGO using NETZSCH TG 209 F1 in air atmosphere from room temperature to 1000 °C at a heating rate of 10 °C min⁻¹.

Electrochemical measurements

For anode of LIC, a slurry containing 80 wt % MnNb₂O₆@rGO, 10 wt % Super P carbon black and 10 wt % polyvinylidene fluoride (PVDF) was well mixed, and then coated on a copper current collector and dried under vacuum at 80 °C for 24 h to remove the redundant methyl-2-pyrrolidone (NMP). Take out and cut it into rounds with the diameter of 14 mm. The cathode of LiC was prepared by coated with activated carbon (AC) on the Al foil similarly to the anode. The mass ratio of cathode to anode is 4:1. Finally, MnNb₂O₆@rGO cathode and AC anode were fabricated by employing coin type cells (2032), where we employed 1 M LiPF₆ dissolved in 1:1:1 by volume mixture of ethylene carbonate/diethyl carbonate/dimethyl carbonate (EC/DEC/EMC) as electrolyte, and separator (16 mm in diameter, celgard 2325).The fabrication of the half-cell is similar to that of the full cell (LIC), the only difference is to replace cathode material with Li metal foil.

All the electrochemical tests of LIC were carried out under the stable state after several CV cycles. Cyclic voltammetry (CV), galvanostatic charge/discharge (GCD) of asprepared products were performed using a computerized potentiostat (Autolab PGSTAT302, Eco Chemie) controlled by GPES software. Long-term cycle life and rate performance of materails were performed employing a CT2001A cell test instrument (LAND Electronic Co., China). The specific capacitance (C, F g⁻¹) of MnNb₂O₆@rGO//AC full cell can be calculated according to the following formula:³

$$C = \frac{\Delta t}{m \times \Delta V^2} \int_{V_1}^{V_2} I dV$$
(1)

The energy density (*E*, Wh kg⁻¹) and power density (*P*, W kg⁻¹) were calculated according to the following equations:^{4, 5}

$$E = \frac{1}{2 \times 3.6} CV^2$$

$$P = \frac{E}{\Delta t} \times 1000$$
(2)

Where I (mA) and Δt (s) represent the discharge current and total discharge time. m (mg) and ΔV (V) are assigned as the mass of active material and the potential window, respectively.

Figure S1 TG curves of the MnNb₂O₆@rGO

Table S1 The atomic ratio of MnNb₂O₆@rGO before and after Ar ion sputtering

Etching depth	5 nm	13 nm	21 nm
O1s	50.16	44.78	40.17
Nb3d	15.96	14.04	11.12
Mn2p	7.83	7.12	5.55
C1s	26.05	34.06	43.16

Figure S2 C_{1s} XPS spectra of MnNb₂O₆@rGO

Figure S3 SEM images of MnNb₂O₆

Figure S4 The EDS pattern of MnNb₂O₆@rGO

Table S2. The Li-ion storage capacity of $MnNb_2O_6@rGO$ compared with otherintercalation-type anode materials reported in the literature.

Anode	Li-ion storage capacity	Ref.	
Li ₃ VO ₄ /N-Doped Carbon Nanowires	400 mAh g ^{-1} at 100 mA g ^{-1}	6	
3D Interconnected TiC Nanoparticle	$450 \text{ mAb } \text{s}^{-1} \text{ at } 100 \text{ mA } \text{s}^{-1}$	7	
Chains	450 mAn g · at 100 mA g ·		
Li Ti O /granhana aomnasita	212.9 mAh g ⁻¹ at 0.5C	8	
Li ₄ i i ₅ O ₁₂ /graphene composite	158.9 mAh g ⁻¹ at 20C	Ũ	
None gized historychical Li Ti O	190 mAh g ⁻¹ at 0.5C	9	
Nano-sized hierarchical L1 _{3.5} I1 ₅ O ₁₂	170 mAh g ⁻¹ at 50C		
Co/LTO core/shell arrays	174 mAh g ⁻¹ at 1C	10	

	155 mAh g ⁻¹ at 20C		
Walnut like Dereus Care/Shall TiO	176.7 mAh g ⁻¹ at 1C	11	
	126.4 mAh g ⁻¹ at 20C		
Massergerous II NIL O /rCO	190 mAh g ⁻¹ at 100 mA g ⁻¹		
Mesoporous n-No ₂ O ₅ /10O	150 mAh g ⁻¹ at 1000 mA g ⁻¹	12	
Ma Nh. O. Darous Misroanharos	338 mAh g ⁻¹ at 0.1C	13	
Mg ₂ NO ₃₄ O ₈₇ Porous Microspheres	230 mAh g ⁻¹ at 10C		
Marila O @rCO salardula	460 mAh g ⁻¹ at 50 mA g ⁻¹	This mode	
winno ₂ 0 ₆ @100 calendula	200 mAh g ⁻¹ at 2000 mA g ⁻¹		

Figure S5 The CV curves of different anode/cathode weight ratios (1:2, 1:4, 1:6, 1:8)

Figure S6 First 10 cycles for CV curves of the assembled device

A distinct bulge can be observed in 1st cycle during charging process, due to the formation of SEI layers in the lithium intercalation process.

Figure S7. Na-ion storage performance of MnNb₂O₆@rGO. (a) CV curves at various

scan rates from 0.2 to 5 mV s⁻¹; **(b)** Charge/Discharge curves at varied current densities from 50 to 2000 mA g⁻¹; **(c)** Rate performance at various current densities from 50 to 2000 mA g⁻¹; **(d)** The long-term cycle life and the coulombic efficiency at 500 mA g⁻¹.

Figure S8. Electrochemical performance of MnNb₂O₆@rGO//AC SIC (**a**) CV curves at various scan rates from 0.5 to 10 mV s⁻¹; (**b**) Charge/Discharge curves at various current densities from 0.05 to 3 A g⁻¹; (**c**) Ragone plots of MnNb₂O₆@rGO//AC SIC compared with other reported SICs; (**d**) The long-term cycle life and the coulombic

efficiency at 1 A g⁻¹.

Table S3. The electrochemical performance of $MnNb_2O_6@rGO$ compared with otherSICs reported in the literature.

Anode	Potential range	Energy density and power density	Ref.	
TiO2 Mesocages-Graphene	1.2.017	64.2 Wh kg ⁻¹ at 56.3 W kg ⁻¹	14	
Nanocomposite//AC	1-3.8V	25.8 Wh kg ⁻¹ at 1357 W kg ⁻¹	17	
Titanium oxynitride	0.5 41	46 Wh kg ⁻¹ at 46 W kg ⁻¹	15	
mesoporous nanowires//AC	0.5-4 V	10.9 Wh kg ⁻¹ at 11.5 kW kg ⁻¹	15	
TiO2@CNT@C//Biomass-	1 437	81.2 Wh kg ⁻¹ at 126 W kg ⁻¹	16	
derived Activated Carbon	1-4 V	37.9 Wh kg ⁻¹ at12.4 kW kg ⁻¹	10	
WS_2 nanosheets//mesoporous	0.2.51	63 Wh kg ⁻¹ at 350 W kg ⁻¹ ;	17	
hollow carbon spheres	0-3.5 V	17 Wh kg ⁻¹ at 7840 W kg ⁻¹	17	
	0.5.21	82 Wh kg ⁻¹ at 63 W kg ⁻¹ ;	18	
MoSe ₂ /G//AC	0.5-3 V	43 Wh kg ⁻¹ at 6688 W kg ⁻¹	10	
NV mallAC	0.4.01/	39 Wh kg ⁻¹ at ~40 W kg ⁻¹	19	
MXene//AC	0-4.0V	23 Wh kg ⁻¹ at 1140 W kg ⁻¹	17	
	0.2 (1)	93.8 Wh kg ⁻¹ at 90 W kg ⁻¹ ;	This	
$MinNb_2O_6(a)rGO//AC$	0-3.6V	59.6 Wh kg ⁻¹ at 5400 W kg ⁻¹	work	

References

- X. Xu, Q. Zhang, Y. Yu, W. Chen, H. Hu and H. Li, *Adv. Mater.*, 2016, 28, 9223-9230.
- Y. H. Xie, X. X. Sheng, D. L. Xie, Z. X. Liu, X. Y. Zhang and L. Zhong, *Carbon*, 2016, **109**, 673-680.

- S. Roldan, D. Barreda, M. Granda, R. Menendez, R. Santamaria and C. Blanco, *Phys. Chem. Chem. Phys.*, 2015, 17, 1084-1092.
- K. Liang, X. Tang and W. Hu, *Journal of Materials Chemistry*, 2012, 22, 11062-11067.
- K. Qiu, Y. Lu, D. Zhang, J. Cheng, H. Yan, J. Xu, X. Liu, J. K. Kim and Y. Luo, *Nano Energy*, 2015, 11, 687-696.
- L. Shen, H. Lv, S. Chen, P. Kopold, P. A. van Aken, X. Wu, J. Maier and Y. Yu, *Adv. Mater.*, 2017, 29, 1700142.
- H. Wang, Y. Zhang, H. Ang, Y. Zhang, H. T. Tan, Y. Zhang, Y. Guo, J. B. Franklin, X. L. Wu, M. Srinivasan, H. J. Fan and Q. Yan, *Adv. Funct. Mater.*, 2016, 26, 3082-3093.
- G. K. Wang, C. X. Lu, X. Zhang, B. A. Wan, H. Y. Liu, M. R. Xia, H. Y. Gou,
 G. Q. Xin, J. Lian and Y. G. Zhang, *Nano Energy*, 2017, 36, 46-57.
- 9. M. Odziomek, F. Chaput, A. Rutkowska, K. Swierczek, D. Olszewska, M. Sitarz, F. Lerouge and S. Parola, *Nature Communications*, 2017, **8**, 1-7.
- C.-a. Zhou, X. Xia, Y. Wang, Y. Zhong, Z. Yao, X. Wang and J. Tu, *Journal of Materials Chemistry A*, 2017, 5, 1394-1399.
- Y. Cai, H.-E. Wang, X. Zhao, F. Huang, C. Wang, Z. Deng, Y. Li, G. Cao and B.-L. Su, Acs Applied Materials & Interfaces, 2017, 9, 10652-10663.
- S. Li, T. Wang, W. Zhu, J. Lian, Y. Huang, Y.-Y. Yu, J. Qiu, Y. Zhao, Y.-C.
 Yong and H. Li, *J Mater Chem A*, 2019, 7, 693-703.
- 13. X. Zhu, Q. Fu, L. Tang, C. Lin, J. Xu, G. Liang, R. Li, L. Luo and Y. Chen, ACS

Appl Mater Interfaces, 2018, 10, 23711-23720.

- 14. Z. Le, F. Liu, P. Nie, X. Li, X. Liu, Z. Bian, G. Chen, H. B. Wu and Y. Lu, *ACS Nano*, 2017, **11**, 2952-2960.
- J. Dong, Y. Jiang, Q. Li, Q. Wei, W. Yang, S. Tan, X. Xu, Q. An and L. Mai, J Mater Chem A, 2017, 5, 10827-10835.
- 16. Y. E. Zhu, L. P. Yang, J. Sheng, Y. N. Chen, H. C. Gu, J. P. Wei and Z. Zhou, Adv Energy Mater, 2017, 7, 9.
- C. Ding, T. Huang, Y. Tao, D. Tan, Y. Zhang, F. Wang, F. Yu and Q. Xie, J Mater Chem A, 2018, 6, 21010-21017.
- X. Zhao, W. Cai, Y. Yang, X. Song, Z. Neale, H.-E. Wang, J. Sui and G. Cao, *Nano Energy*, 2018, 47, 224-234.
- N. Kurra, M. Alhabeb, K. Maleski, C.-H. Wang, H. N. Alshareef and Y. Gogotsi, ACS Energy Letters, 2018, 3, 2094-2100.