Electronic supplementary information for the manuscript:

One-Pot Gamma Ray-Induced Green Synthesis of a Prussian Blue-Laden Polyvinylpyrrolidone/Reduced Graphene Oxide Aerogel for the Removal of Hazardous Pollutants

Ilsong Lee^{a,d,1}, Sung-Min Kang^{a,1}, Sung-Chan Jang^{a,d,1}, Go-Woon Lee^{a,b}, Ha Eun Shim^{c,d}, Muruganantham Rethinasabapathy^{a,*}, Changhyun Roh^{d,*}, Yun Suk Huh^{a,*}

 ^a WCSL of Integrated Human Airway-on-a-Chip, Department of Biological Engineering, Biohybrid System Research Center (BSRC), Inha University, Incheon 22212, Republic of Korea
 ^b R&D Platform Center, Korea Institute of Energy Research (KIER), Gajeong-ro, Daejeon, 34129, Republic of Korea

^c Department of Chemistry, Kyungpook National University, Daegu 41566, Republic of Korea

^d Biotechnology Research Division, Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute (KAERI), Jeonbuk, 56212, Republic of Korea

Fig. S1 Photograph of the gelation of PVP of different molecular weights before γ -radiation and after being irradiated by γ -ray radiation at different absorbed doses (0, 20, 40, and 60 kGy). (A) PVP (Mw = 10,000), (B) PVP (Mw = 40,000), and (C) PVP (Mw = 360,000).

Fig. S2 Photograph of the gelation of PB@PVP/rGO using PVP of different molecular weights after being irradiated by γ -ray radiation (50 kGy). (A) PB@PVP/rGO (PVP_{MW = 10,000}), (B) PB@PVP/rGO (PVP_{MW = 40,000}), and (C) PB@PVP/rGO (PVP_{MW = 360,000}).

Fig. S3 Surface morphology (pore formation) of PB@PVP/rGO aerogel using PVP polymers of two different molecular weight irradiated by γ -rays of intensity of 50 kGy. (A) PB@PVP/rGO (PVP_{MW = 40,000}), and (B) PB@PVP/rGO (PVP_{MW = 360,000}).

Fig. S4 The radiolysis induced gelation of PVP hydrogel as a function of the absorbed dosages at 0, 10, 20, 30, 40, and 50 kGy. The scale bar was 2 cm.

Fig. S5 XRD analysis of PB@PVP/rGO aerogel.

Fig. S6 (a) Raman and (b) FT-IR spectrum of PB@PVP/rGO aerogel.

Fig. S7 Pore size distribution calculation in the PB@PVP/rGO aerogel. (a) SEM image of monolithic PB@PVP/rGO aerogel and (b) normal distribution curve of the pore size distribution.

Fig. S8 PB@PVP/rGO aerogel with hydrophilic nature at an air/water interface. The scale bars represent 2 cm.

Fig. S9 (a) Effect of initial methylene blue concentration and (b) contact time on the adsorption of methylene blue onto PB@PVP/rGO aerogel.

Fig. S10 Standard curve for methylene blue concentration at their maximum absorption peak at 670 nm.

Fig. S11 UV-vis absorbance plotted versus different times for removal of methylene blue dye.

Fig. S12 Recycle study of PB@PVP/rGO for oil absorption through absorption-combustion experiment. (A) PB@PVP/rGO aerogel before combustion, (B) combustion – 1 cycle, (C) PB@PVP/rGO aerogel after 5 cycles, (C) combustion – 6th cycle.

Fig. 13 Recycle studies of PB@PVP/rGO for oil absorption through absorption–combustion cyclic test and absorption–squeezing cyclic test.

Dolymor	Molecular		Radiation Dose	ation Dose	
rorymer	Weight	20 kGy	20 kGy 40 kGy	60 kGy	
PVP10	10,000	No Gelation	No Gelation	No Gelation	
PVP40	40,000	No Gelation	Gelation	Gelation	
PVP360	360,000	Gelation	Gelation	Gelation	

Table S1 Gelation of PVP polymers of different molecular weights irradiated by γ -radiation of different doses.

Table S2 Methylene blue adsorption parameters of Langmuir and Freundlich models ofPB@PVP/rGO aerogel.

Langmuir model			Free	Freundlich model		
<i>K_L</i> (L/mg)	q_{max} (mg/g)	<i>R</i> ²	K _F (L/mg)	п	<i>R</i> ²	
0.02498	44.73	0.9492	5.4167	2.9269	0.9452	

 Table S3 Adsorption capacities of Cs⁺ ions and MB on PB@PVP/rGO aerogel and other reported aerogels.

Adsorbate	Adsorbent	Synthesis Method	Adsorption Capacity (mg g ⁻¹)	Refs.
	Prussian blue/cellulose aerogel	Chemical reduction	13.70	[1]
	N, N, N', N'- tetraoctyldiglycolami de impregnated graphene aerogel (GA-TODGA)	Chemical Reduction	66.8	[2]
Cesium (Cs ⁺) ions	Prussian blue/graphene aerogel	Chemical Reduction	58.82	[3]
	Potassium copper hexacyanoferrate (KCuHCF)/Fe ₂ O	Chemical Reduction	82.8	[4]
	PB@PVP/rGO	Gamma- irradiation Technique	143.88	This Work

	PB@PVP/rGO	reduction Gamma- irradiation	44.73	This
	Silica aerogel	Chemical	49 2	[9]
blue (MB)	Graphene (G)/Carbon spheres (CS)/Silver nanoparticles (G/AgCS) hybrid aerogel	Chemical reduction	65.83	[8]
Mathylana	Hydrophilic silica aerogels (HSA)	Chemical reduction	47.21	[7]
	Organi-inorganic Cr ³⁺ /Fe ³⁺ aerogels with rigid bridging carboxylates	Chemical reduction	20.2	[6]
	Graphene oxide (GO)/sodium alginate (SA)	Chemical Reduction	833	[5]

References:

- Lee, S.-H. Kim, M. Rethinasabapathy, Y. Haldorai, G.-W. Lee, S.R. Choe, S.-C. Jang, S.-M. Kang, Y.-K. Han, C. Roh, W.-S. Cho and Y. S. Huh, *Sci. Rep.*, 2018, 8, 4540.
- 2. M. Chen, Z. Li, Y. Geng, H. Zhao, S. He, Q. Li and L. Zhang, *Talanta*, 2018, 181, 311-317.

- Y.-R. He, Y. Yang, Z.-Y. Huang, W.-J. Wang, X.-L. Li, P.-H. Zhang, Z.-Y. Tan and D. Zhang, *RSC Adv.*, 2017, 7, 45085.
- Y. K. Kim, T. Kim, Y. Kim, D. Harbottle and J. W. Lee, *J. Hazard. Mater.*, 2017, 340, 130-139.
- 5. T. Ma, P. R. Chang, P. Zheng, F. Zhao and X. Ma, *Chem. Eng. J.*, 2014, 240, 595-600.
- S. Xiang, L. Li, J. Zhang, X. Tan, H. Cui, J. Shi, Y. Hu, L. Chen, C.-Y. Su and S.L. James, J. Mater. Chem., 2012, 22, 1862.
- H. Han, W. Wei, Z. Jiang, J. Lu, J. Zhu and J. Xie, Colloids Surf. A: Physicochem. Eng. Aspects, 2016, 509, 539-549.
- S. P. Dubey, A. D. Swivedi, I.-C. Kim, M. Sillanpaa, Y.-N. Kwon and C. Lee, *Chem. Eng. J.*, 2014, 244, 160-167.
- N. Saad, M. Al-Mawla, E. Moubarak, M. Al-Ghoul and H. El-Rassy, *RSC Adv.*, 2015, 5, 6111.