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Table S1: Table summarizing some computational predictions for n-type and p-type behavior
of the Cu,lIgIVTey diamond-like semiconductors (IIg:Zn, Cd, Hg)(IV: Si, Ge, Sn). This work
has been presented in an agglomerate form previously and is available online on our open-
source website TEDesignLab.org — it is summarized here for convenience only. We can see
that the improved electronic mobility for the n-type predictions leads to significantly higher
quality-factor, 3, for the n-type compositions.

Compound  f, B, & (W/mK) p, (em®/Vs) pp (cm?/Vs) mf (me) my , (me)

CuyZnSiTe, 18 4 6.9 680 34 0.04 0.33
CuyZnGeTey, 19 7 6.5 730 23 0.04 0.24
CuyZnSnTe, 19 6 6.0 670 35 0.04 0.30
CuyCdSiTey, 30 5 6.5 2350 22 0.02 0.42
CuyCdGeTey, 24 5 6.1 1190 25 0.03 0.38
CuyCdSnTey, 41 5 6.6 2420 25 0.01 0.39
Cuy,HgSiTe, 31 5 6.2 2130 26 0.02 0.38
CuoHgGeTey, 37 6 5.9 3050 28 0.02 0.35
CuyoHgSnTe, 57 6 5.9 8390 29 0.01 0.33
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Figure S1: Room-temperature powder synchrotron data (black) was used to solve the crystal
structure of HgyGeTe, (inset) via charge flipping methods. Also shown is the subsequent Ri-
etveld refinement (red), the difference profile (blue), and the key crystallographic parameters
obtained from the fit. HgoGeTe, adopts the ordered-vacancy (defect chalcopyrite) structure.
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Figure S2: X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy disper-
sive spectroscopy (EDS) characterization for the Ge-GeTe-HgTe-CuyHgGeTey critical point.
For XRD, a Pawley analysis is performed to assess the lattice parameters of the CusHgGeTe,
matrix phase. SEM image is a typical backscatter electron image of the densified pellet.
The EDS analysis represents an average composition for each of the impurity phases and
the CuyHgGeTe, matrix phase. EDS was performed and averaged over multiple precipitates
(~5) for impurities and multiple locations within the matrix phase (~10).

S4



1.8
0.0
96.8
1.4

Ge

61.1
1.8
2.0
45.1

Cu,Te

8.3
42.7
4.6
44.4

HgTe

26.2
13.1

13.6
| — :

Cu,HgGeTe,

— Experimental

— Pawley (Cu,HgGeTe,)
+ Ge
+ Cu,Te
+ HgTe

— Difference

Intensity (A.U.)

10 20 30 40 50 60 70 80
26 (Degrees)

Figure S3: X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dis-
persive spectroscopy (EDS) characterization for the Ge-CuyTe-HgTe-CuyHgGeTe, critical
point. For XRD, a Pawley analysis is performed to assess the lattice parameters of the
CusHgGeTe, matrix phase. SEM image is a typical backscatter electron image of the den-
sified pellet. The EDS analysis represents an average composition for each of the impurity
phases and the CusHgGeTe, matrix phase. EDS was performed and averaged over multiple
precipitates (~5) for impurities and multiple locations within the matrix phase (~10).

S5



5.9
45.5
4.2
44.4

HgTe

57.1
1.4
1.3
40.2

Cuq4Te

47.7
4.4
1.4
46.5

CuTe

26.5
12.7

131 Cu,HgGeTe,

Y

2000x 10 pym

— Experimental

— Pawley (Cu,HgGeTe,)
+ HgTe
+ Cu,y4Te
+ CuTe

— Difference

Intensity (A.U.)

| A 1lJLJ N Meoon h sk 1*_______&.___.‘ I

ljr \ N T | -

10 20 30 40 50 60 70 80
26 (Degrees)

Figure S4: X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy disper-
sive spectroscopy (EDS) characterization for the HgTe-Cu; 4Te-CuTe-CusHgGeTey critical
point. For XRD, a Pawley analysis is performed to assess the lattice parameters of the
CusHgGeTey matrix phase. SEM image is a typical backscatter electron image of the den-
sified pellet. The EDS analysis represents an average composition for each of the impurity
phases and the CusHgGeTey matrix phase. EDS was performed and averaged over multiple
precipitates (~5) for impurities and multiple locations within the matrix phase (~10). This
is one case where XRD is unreliable and fails to identify Cu; 4Te and CuTe even though they
are quite ovbious through SEM.
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Figure S5: X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy disper-
sive spectroscopy (EDS) characterization for the Ge-GeTe-CuyGeTes-CusHgGeTey critical
point. For XRD, a Pawley analysis is performed to assess the lattice parameters of the
CusHgGeTe, matrix phase. SEM image is a typical backscatter electron image of the den-
sified pellet. The EDS analysis represents an average composition for each of the impurity
phases and the CusHgGeTe, matrix phase. EDS was performed and averaged over multiple
precipitates (~5) for impurities and multiple locations within the matrix phase (~10).
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Figure S6: X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy disper-
sive spectroscopy (EDS) characterization for the Cuy 4Te-CuyTe-HgTe-CuyHgGeTey critical
point. For XRD, a Pawley analysis is performed to assess the lattice parameters of the
CuyHgGeTey matrix phase. SEM image is a typical backscatter electron image of the den-
sified pellet. The EDS analysis represents an average composition for each of the impurity
phases and the CusHgGeTe, matrix phase. EDS was performed and averaged over multiple
precipitates (~5) for impurities and multiple locations within the matrix phase (~10).
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Figure S7: X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dis-
persive spectroscopy (EDS) characterization for the Cuy 4Te-CuyTe-CuyGeTes-CuyHgGeTey
critical point. For XRD, a Pawley analysis is performed to assess the lattice parameters
of the CusHgGeTe, matrix phase. SEM image is a typical backscatter electron image of
the densified pellet. Small cracks on surface are caused by polishing and do not appear in
fracture surface images. The EDS analysis represents an average composition for each of
the impurity phases and the CusHgGeTe, matrix phase. EDS was performed and averaged
over multiple precipitates (~5) for impurities and multiple locations within the matrix phase
(~10). XRD fails to identify Cuy4Te, which is expected based on the low concentrations
observed in SEM.
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Figure S8: X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy disper-
sive spectroscopy (EDS) characterization for the Ge-CuyTe-CusGeTes-CuyHgGeTe, critical
point. For XRD, a Pawley analysis is performed to assess the lattice parameters of the
CuyHgGeTey matrix phase. SEM image is a typical backscatter electron image of the densi-
fied pellet. In this region, we observe CuyGeTes as a shell around the Ge precipitates (inset).
The EDS analysis represents an average composition for each of the impurity phases and
the CupsHgGeTe, matrix phase. EDS was performed and averaged over multiple precipitates
(~5) for impurities and multiple locations within the matrix phase (~10).
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Figure S9: X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dis-
persive spectroscopy (EDS) characterization for the GeTe-Te-CuyGeTes-CusHgGeTey crit-
ical point. For XRD, a Pawley analysis is performed to assess the lattice parameters of
the CusHgGeTey matrix phase. SEM image is a typical backscatter electron image of the
densified pellet. In this region, we observe grains of Cu,HgGeTe, that exhibit contrast
in backscatter due to electron channeling (highlighted). EDS analysis indicates that these
grains are identical to CusHgGeTey composition. The EDS analysis represents an average
composition for each of the impurity phases and the CusHgGeTe, matrix phase. EDS was
performed and averaged over multiple precipitates (~5) for impurities and multiple locations
within the matrix phase (~10).
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Figure S10: X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dis-
persive spectroscopy (EDS) characterization for the CuTe-Te-CusGeTes-CusHgGeTey criti-
cal point. For XRD, a Pawley analysis is performed to assess the lattice parameters of the
CuyHgGeTey matrix phase. SEM image is a typical backscatter electron image of the den-
sified pellet. The EDS analysis represents an average composition for each of the impurity
phases and the CusHgGeTe, matrix phase. EDS was performed and averaged over multiple
precipitates (~5) for impurities and multiple locations within the matrix phase (~10).
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Figure S11: X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dis-
persive spectroscopy (EDS) characterization for the CuTe-Cuy 4Te-CuyGeTes-CuyHgGeTey
critical point. For XRD, a Pawley analysis is performed to assess the lattice parameters of
the CusHgGeTe, matrix phase. SEM image is a typical backscatter electron image of the
densified pellet. We observe some liftout of Cuy 4Te grains during polishing. The EDS anal-
ysis represents an average composition for each of the impurity phases and the CusHgGeTe,
matrix phase. EDS was performed and averaged over multiple precipitates (~5) for impuri-
ties and multiple locations within the matrix phase (~10).
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Figure S12: X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy
dispersive spectroscopy (EDS) characterization for the HgTe-CuTe-Te-CusHgGeTey criti-
cal point. For XRD, a Pawley analysis is performed to assess the lattice parameters of the
CusHgGeTey matrix phase. SEM image is a typical backscatter electron image of the den-
sified pellet. The EDS analysis represents an average composition for each of the impurity
phases and the CusHgGeTey matrix phase. EDS was performed and averaged over multiple
precipitates (~5) for impurities and multiple locations within the matrix phase (~10). XRD
fails to identify CuTe, although this is expected with the low concentration observed in SEM.
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Figure S13: X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dis-
persive spectroscopy (EDS) characterization for the GeTe-Te-HgyGeTe, critical point. For
XRD, a Pawley analysis is performed to assess the lattice parameters of the HgyGeTe, ma-
trix phase. SEM image is a typical backscatter electron image of the densified pellet. The
EDS analysis represents an average composition for each of the impurity phases and the
Hg,GeTe, matrix phase. EDS was performed and averaged over multiple precipitates (~5)
for impurities and multiple locations within the matrix phase (~10).
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Figure S14: X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dis-
persive spectroscopy (EDS) characterization for the HgTe-Te-HgyGeTe, critical point. For
XRD, a Pawley analysis is performed to assess the lattice parameters of the HgsGeTe,; ma-
trix phase. SEM image is a typical backscatter electron image of the densified pellet. The
EDS analysis represents an average composition for each of the impurity phases and the
Hg,GeTe, matrix phase. EDS was performed and averaged over multiple precipitates (~5)
for impurities and multiple locations within the matrix phase (~10).
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Figure S15: X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dis-
persive spectroscopy (EDS) characterization for the HgTe-GeTe-HgyoGeTe, critical point.
For XRD, a Pawley analysis is performed to assess the lattice parameters of the HgyGeTey

matrix phase.

SEM image is a typical backscatter electron image of the densified pellet.

The EDS analysis represents an average composition for each of the impurity phases and the
HgyGeTe, matrix phase. EDS was performed and averaged over multiple precipitates (~5)

for impurities and multiple locations within the matrix phase (~10).

S17



0.4
47.6

55 HgTe
46.5

0.0

11 GeTe

49.4
49.5

3.2

28.8
15.2
52.8

(Cug4Hg, sGeTey)

— Experimental
— Pawley (Cu, 4Hg, sGeTe,)
+ HgTe
+ GeTe
— Difference
S
<
2
2
2
£
J ok JM A N A Ah ) PR W W
A A A 1 A E
| | | |
10 20 30 40 50 60 70 80

20 (Degrees)

Figure S16: X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dis-
persive spectroscopy (EDS) characterization for the Cug,Hgs_,GeTey alloy (x = 0.2). Im-
purities of GeTe and HgTe serve to tie sample to the same edge of the alloy single-phase
region. For XRD, a Pawley analysis is performed to assess the lattice parameters of the
Hgy,GeTey matrix phase. SEM image is a typical backscatter electron image of the densified
pellet. The EDS analysis represents an average composition for each of the impurity phases

and the alloyed matrix phase. EDS was performed

and averaged over multiple precipitates

(~5) for impurities and multiple locations within the matrix phase (~10).
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Figure S17: X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dis-
persive spectroscopy (EDS) characterization for the Cug,Hgs ,GeTey alloy (x = 0.4). Im-
purities of GeTe and HgTe serve to tie sample to the same edge of the alloy single-phase
region. For XRD, a Pawley analysis is performed to assess the lattice parameters of the
Hgy,GeTey matrix phase. SEM image is a typical backscatter electron image of the densified
pellet. The EDS analysis represents an average composition for each of the impurity phases
and the alloyed matrix phase. EDS was performed and averaged over multiple precipitates
(~5) for impurities and multiple locations within the matrix phase (~10).
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Figure S18: X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dis-
persive spectroscopy (EDS) characterization for the Cug,Hgs ,GeTey alloy (x = 0.6). Im-
purities of GeTe and HgTe serve to tie sample to the same edge of the alloy single-phase
region. For XRD, a Pawley analysis is performed to assess the lattice parameters of the
Hgy,GeTey matrix phase. SEM image is a typical backscatter electron image of the densified
pellet. The EDS analysis represents an average composition for each of the impurity phases
and the alloyed matrix phase. EDS was performed and averaged over multiple precipitates
(~5) for impurities and multiple locations within the matrix phase (~10).
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Figure S19: X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dis-
persive spectroscopy (EDS) characterization for the Cug,Hgs ,GeTey alloy (x = 0.8). Im-
purities of GeTe and HgTe serve to tie sample to the same edge of the alloy single-phase
region. For XRD, a Pawley analysis is performed to assess the lattice parameters of the
Hgy,GeTey matrix phase. SEM image is a typical backscatter electron image of the densified
pellet. The EDS analysis represents an average composition for each of the impurity phases
and the alloyed matrix phase. EDS was performed and averaged over multiple precipitates
(~5) for impurities and multiple locations within the matrix phase (~10).
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Figure S20: X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dis-
persive spectroscopy (EDS) characterization for the Cuy,Hgy ,GeTey alloy (x = 1.0). Im-
purities of GeTe and HgTe serve to tie sample to the same edge of the alloy single-phase
region. The emergence of Ge in this sample is expected, as the sample composition at x
= 1.0 is actually within a proper four-phase critical point (Ge-HgTe-GeTe-CuyHgGeTey).
For XRD, a Pawley analysis is performed to assess the lattice parameters of the HgyGeTey
matrix phase. SEM image is a typical back backscatter image of the densified pellet. The
EDS analysis represents an average composition for each of the impurity phases and the
alloyed matrix phase. EDS was performed and averaged over multiple precipitates (~5) for
impurities and multiple locations within the matrix phase (~10).
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Figure S21: In both the lattice thermal conductivity and the Hall mobility, we see strong
evidence of alloy scattering along the HgyGeTey-CusHgGeTey alloys. As the alloy compo-
sitions must include a large degree of site disorder with incremental Cu addition, the Hall
mobility is particularly disrupted by the alloying.
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Figure S22: A full suite of thermoelectric transport measurements along the HgsGeTey-
CusHgGeTe, alloys demonstrates transport consistent with an alloy between an intrinsic
(HgoGeTey) and degenerate (CugHgGeTey) semiconductor. While it is possible to optimize
the p-type carrier concentration through the HgoGeTe,-CusHgGeTe, alloy series, it is likely
undesirable due to the increased alloy scattering in the electronic conductivity and mobility
(see Figure S21). As such, the values for 27" along the alloying line may not be representative
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of the optimized properties of either HgoGeTey or CusHgGeTey.
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