Electronic Supplementary Information (ESI)

Highly efficient CO₂ capture by mixed matrix membranes containing

three-dimensional covalent organic framework fillers

Youdong Cheng, Linzhi Zhai, Yunpan Ying, Yuxiang Wang, Guoliang Liu, Jinqiao Dong, Denise Z. L. Ng,

Saif A. Khan, Dan Zhao*

Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585

*E-mail: <u>chezhao@nus.edu.sg</u> (D.Z.)

Fig. S1. FTIR spectra of COF-300 and its monomers.

Fig. S2. PXRD patterns of fresh COF-300 and COF-300 soaked in water at room temperature for 3 days.

Fig. S3. CO_2 , CH_4 , and N_2 sorption isotherms of COF-300 measured at 273 K.

Fig. S4. (a) The isosteric heat of adsorption (Q_{st}) for CO₂, CH₄ and N₂ of COF-300. (b) The ideal adsorption solution theory (IAST) selectivity of COF-300 for the equal molar mixtures of CO₂/CH₄ or CO₂/N₂ at 298K and 1 bar.

Fig. S5. Cross-sectional FESEM images of COF-300/6FDA-DAM MMMs containing (a) 0 wt%, (b) 2 wt%, (c) 5 wt%, (d) 7 wt%, (e) 10 wt% and (f) 15 wt% COF-300 fillers at different magnifications.

Fig. S6. Cross-sectional FESEM images of COF-300/Pebax MMMs containing (a) 0 wt%, (b) 2 wt%, (c) 5 wt%, (d) 7 wt%, (e) 10 wt% and (f) 15 wt% COF-300 fillers at different magnifications.

Fig. S7. FTIR spectra of COF-300/6FDA-DAM series MMMs.

Fig. S8. FTIR spectra of COF-300/Pebax series MMMs.

Fig. S9. XRD patterns of COF-300 and COF-300/Pebax series MMMs.

Fig. S10. DSC curves of COF-300/Pebax series MMMs.

Fig. S11. TGA curves of COF-300/Pebax series MMMs.

Fig. S12. Stress-strain curves for (a) COF-300/6FDA-DAM series MMMs; (b) COF-300/Pebax series MMMs.

Fig. S13. Transmembrane pressure influence on the CO_2/N_2 separation performance of (a) 6FDA-DAM and (b) Pebax systems.

Fig. S14. FTIR spectra of COF-300 and COF@PEI.

Fig. S15. PXRD patterns of COF-300 and COF@PEI.

Fig. S16. TGA curves of COF-300 and COF@PEI.

Fig. S17. N_2 sorption isotherm (77 K) of COF@PEI (adsorption: solid symbols; desorption: empty symbols).

Fig. S18. CO₂, CH₄ and N₂ sorption isotherms of COF@PEI measured at (a) 273 K and (b) 298 K. (c) The isosteric heat of adsorption (Q_{st}) for CO₂, CH₄ and N₂ of COF@PEI. (b) The ideal adsorption solution theory (IAST) selectivity of COF@PEI for CO₂/CH₄ or CO₂/N₂ equal molar mixtures at 298 K and 1 bar.

Fig. S19. Cross-sectional FESEM images of (a) COF@PEI/6FDA-DAM-7 and (b) COF@PEI/Pebax-10 MMMs at different magnifications.

Fig. S20. The effect of COF@PEI filler content on membrane separation performance tested at 25 °C with a transmembrane pressure of 1 bar. (a) CO_2/CH_4 and (b) CO_2/N_2 separation performance of COF@PEI/6FDA-DAM series MMMs. (c) CO_2/CH_4 and (d) CO_2/N_2 separation performance of COF@PEI/Pebax series MMMs.

Fig. S21. Robeson upper bound plots for (a) CO_2/CH_4 and (b) CO_2/N_2 of COF@PEI/6FDA-DAM and COF@PEI/Pebax MMMs.

Membrane	Young's modulus (MPa)	Maximum tensile strength (MPa)	Elongation at break (%)
6FDA-DAM	1.62 ± 0.14	74.1 ± 3.7	8.9 ± 0.7
COF-300/6FDA-DAM-2	1.75 ± 0.12	57.7 ± 2.9	5.4 ± 0.6
COF-300/6FDA-DAM-5	1.83 ± 0.15	55.4 ± 2.1	4.7 ± 0.6
COF-300/6FDA-DAM-7	1.92 ± 0.11	49.9 ± 3.3	4.5 ± 0.3
COF-300/6FDA-DAM-10	1.85 ± 0.14	41.2 ± 1.8	4.0 ± 0.3
COF-300/6FDA-DAM-15	1.12 ± 0.09	39.1 ± 2.2	3.6 ± 0.3
Pebax	3.42 ± 0.43	31.7 ± 3.6	1192 ± 48
COF-300/Pebax-2	4.89 ± 0.57	28.1 ± 2.7	1001 ± 37
COF-300/Pebax-5	6.25 ± 0.62	23.8 ± 3.3	938 ± 35
COF-300/Pebax-7	6.52 ± 0.59	22.1 ± 2.4	886 ± 56
COF-300/Pebax-10	6.98 ± 0.41	20.6 ± 1.5	814 ± 43
COF-300/Pebax-15	4.29 ± 0.36	19.2 ± 2.7	754 ± 39

Table S1. Summary of mechanical properties of COF-300/6FDA-DAM and COF-300/Pebax series MMMs.

		C:llan	Filler	Filler	CO ₂	Gas	
Polymer	Filler	Filler	pore	content	permeability	selectivity	References
		туре	size (Å)	(wt%)	change (%)	change (%)	
Ultem	NUS-2	2D	8	20	122	11 ^a	1
PIM-1	SNW-1	2D	5	10	106	27 ^a	2
Matrimid®	ACOF-1	2D	9.4	16	121	6ª	3
6FDA-DAM	ACOF-1	2D	9.4	16	0	21 ^b	4
PBI-Bul	TpPa-1	2D	18	50	470	-30ª	5
PBI-Bul	TpBD	2D	24	50	543	15ª	5
6FDA-DAM	COF-300	3D	4	7	54	36ª	This work
6FDA-DAM	COF-300	3D	4	7	46	36ª	This work
Pebax	COF-300	3D	4	10	48	31 ^b	This work
Pebax	COF-300	3D	4	10	47	16 ^b	This work

Table S2. Comparisons of CO_2 capture performance change between 3D COF-based and 2D COF-based MMMs.

^a: CO_2/CH_4 selectivity; ^b: CO_2/N_2 selectivity.

	Filler	Gas per	meability	co /cu	Predicted CO ₂	Predicted CH ₄	Dradicted performance of pure
System	content	CO ₂	CH_4	selectivity	permeability	permeability	COF-300
	(vol%)				(Barrer)	(Barrer)	
	0	767 ± 24	34.5 ± 1.9	22.3 ± 2.1	767*	34.5*	
	4.0	842 ± 38	36.4 ± 2.5	23.5 ± 1.9	842*	37.9*	$P_{CO_2} = 9830 \pm 132$ Barrer
COF-300/	7.5	972 ± 46	37.1 ± 4.2	26.2 ± 1.4	913	38.3	$P_{CH_4} = 125 \pm 7$ Barrer
6FDA-DAM	13.2	1185 ± 41	39.2 ± 5.5	30.3 ± 1.5	1037	41.3	α_{CO_2/CU_2}
	18.3	2842 ± 76	156.8 ± 12.3	24.6 ± 1.7	1162	44.2	$(2/CH_4) = 78.6 \pm 8.3$
	26.2	4746 ± 138	390.6 ± 48.4	14.7 ± 1.2	1375	48.9	
	0	73 ± 4	3.8 ± 0.4	18.7 ± 1.2	73*	3.83*	
	3.4	81 ± 6	4.2 ± 0.3	19.4 ± 0.7	80*	4.18*	Р _{СО2} = 8850 ± 178 Barrer
COF-300/	8.3	86 ± 4	4.0 ± 0.3	21.5 ± 1.1	92	4.72	$P_{CH_4} = 80 \pm 3$ Barrer
Pebax	11.5	98 ± 5	4.1 ± 0.5	23.7 ± 1.7	101	5.11	$\alpha_{CO_2/CU}$
	16.1	107 ± 6	4.2 ± 0.7	25.5 ± 1.3	114	5.70	$(2/c^{n}4) = 110.6 \pm 5.7$
	23.3	327 ± 11	22.3 ± 2.6	14.7 ± 0.8	137	6.75	

Table S3. Experimental and predicted CO_2/CH_4 separation performance of COF-300-based MMMs.

*: These values were adopted for Maxwell model calculation and averaged data were used for performance prediction.

	Filler	Gas per	meability	60 (N	Predicted CO ₂	Predicted N ₂	
System	content	CO ₂	N ₂	selectivity	permeability (Barrer)	permeability (Barrer)	COF-300
	(10170)				(201101)	(201101)	
	0	812 ± 28	31.5 ± 1.2	24.8 ± 1.4	812*	31.5*	
	4.0	894 ± 26	33.9 ± 2.3	26.5 ± 1.3	894*	33.9*	Р _{СО2} = 10320 ± 255 Barrer
COF-300/	7.5	1014 ± 53	34.7 ± 3.6	29.2 ± 1.1	967	35.9	$P_{N_2} = 170 \pm 8$ Barrer
6FDA-DAM	13.2	1205 ± 32	36.9 ± 4.8	32.6 ± 1.7	1098	39.5	$\alpha_{cO_2/N}$
	18.3	2964 ± 81	125.1 ± 11.4	23.7 ± 1.9	1227	43.0	$(2/N_2) = 60.7 \pm 4.5$
	26.2	5133 ± 138	368.2 ± 48.4	13.9 ± 1.6	1454	48.9	
	0	85 ± 7	1.8 ± 0.2	48.6 ± 3.4	85*	1.75*	
	3.4	94 ± 8	1.9 ± 0.2	48.8 ± 2.3	94*	1.92*	Р _{СО2} = 9130 ± 110 Barrer
COF-300/	8.3	103 ± 11	2.0 ± 0.4	51.0 ± 2.1	107	2.20	$P_{N_2} = 95 \pm 4$ Barrer
Pebax	11.5	113 ± 15	2.1 ± 0.3	53.9 ± 3.2	117	2.41	$\alpha_{CO_2/N}$
	16.1	125 ± 14	2.2 ± 0.4	56.6 ± 2.9	132	2.69	$(2/N^2) = 96.1 \pm 8.4$
	23.3	359 ± 13	7.9 ± 0.6	45.5 ± 3.6	159	3.23	

Table S4. Experimental and predicted CO_2/N_2 separation performance of COF-300-based MMMs.

*: These values were adopted for Maxwell model calculation and averaged data were used for performance prediction.

Guetere		Gas	permeability		
System	Filler content (VOI%)	CO ₂	CH_4		
	0	767 ± 24	34.5 ± 1.9	22.3 ± 2.1	
	13.3	1023 ± 37	25.7 ± 3.8	40.5 ± 2.8	
	17.0	1089 ± 42	23.5 ± 2.2	45.8 ± 3.7	
OFDA-DAIVI	24.6	1758 ± 66	49.4 ± 5.7	35.6 ± 2.1	
	31.6	3894 ± 83	142.5 ± 11.2	27.4 ± 2.7	
	0	73 ± 4	3.8 ± 0.4	18.7 ± 1.2	
	15.0	101 ± 5	2.8 ± 0.3	36.2 ± 1.8	
COF@PEI/	21.8	113 ± 3	2.6 ± 0.2	43.7 ± 2.9	
PEDAX	28.4	126 ± 4	2.6 ± 0.3	48.3 ± 2.5	
	34.5	218 ± 7	5.3 ± 0.4	41.5 ± 3.3	

Table S5. Experimental CO_2/CH_4 separation performance of COF@PEI-based MMMs.

System Filler cont	Filler content (vol()	Gas	permeability	CO (N as least 1)
	Filler content (vor%)	CO2	N ₂	CO_2/N_2 selectivity
	0	812 ± 28	31.5 ± 1.2	24.8 ± 1.4
COF@PEI/ 6FDA-DAM	13.3	1088 ± 26	25.1 ± 2.3	44.5 ± 2.1
	17.0	1154 ± 21	23.7 ± 1.9	48.7 ± 3.5
	24.6	1978 ± 45	50.6 ± 6.3	39.1 ± 4.8
	31.6	3977 ± 92	127.5 ± 9.8	31.2 ± 2.9
	0	85 ± 7	1.75 ± 0.2	48.6 ± 3.4
COF@PEI/ Pebax	15.0	112 ± 6	1.6 ± 0.1	72.1 ± 3.3
	21.8	121 ± 8	1.4 ± 0.2	80.7 ± 4.7
	28.4	126 ± 11	1.5 ± 0.3	84.2 ± 5.5
	34.5	273 ± 16	4.0 ± 0.5	68.4 ± 4.2

Table S6. Experimental CO_2/N_2 separation performance of COF@PEI-based MMMs.

References:

- Z. Kang, Y. Peng, Y. Qian, D. Yuan, M. A. Addicoat, T. Heine, Z. Hu, L. Tee, Z. Guo and D. Zhao, *Chem Mater*, 2016, 28, 1277–1285.
- X. Wu, Z. Tian, S. Wang, D. Peng, L. Yang, Y. Wu, Q. Xin, H. Wu and Z. Jiang, *J Membr Sci*, 2017, 528, 273–283.
- 3. H. Fan, A. Mundstock, J. Gu, H. Meng and J. Caro, J Mater Chem A, 2018, 6, 16849–16853.
- 4. M. Shan, B. Seoane, E. Andres-Garcia, F. Kapteijn and J. Gascon, J Membr Sci, 549, 3772-3384.
- 5. B. P. Biswal, H. D. Chaudhari, R. Banerjee and U. K. Kharul, Chem Eur J, 2016, 22, 4695-4699.