Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2018

Supporting Information

Realizing stable lithium deposition by in-situ grown Cu₂S nanowires

inside commercial Cu foam for lithium metal anodes

Zhijia Huang,^a Chen Zhang,^a Wei Lv,^{*b} Guangmin Zhou,^d Yunbo Zhang,^a Yaqian Deng,^b Haoliang Wu,^c Feiyu Kang ^{ab} and Quan-Hong Yang^{*c}

^a Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen 518055, China
^b Shenzhen Geim Graphene Center (SGC), Engineering Laboratory for Functionalized Carbon Materials, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
^c Nanoyang Group, State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
^d Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA

Department of Materials Science and Engineering, Staniord Oniversity, Staniord, CA 94505, OSA

Figure S1. Nitrogen adsorption/desorption isotherm of the 3D Cu₂S NWs/Cu sample.

Figure S2. SEM image of the morphology of Li deposition on a) bare Cu foam and b) 3D Cu_2S NWs/Cu with current density of 1 mA cm⁻² for a total capacity of 1 mAh cm⁻² after 100 cycles.

Figure S3. SEM images of the morphology of Li deposited on (a, c) bare Cu foam and (b, d) $3D Cu_2S$ NWs/Cu with current density of 2 mA cm⁻² for a total capacity of 1 mAh cm⁻² after 20 cycles. SEM images of (e, g) bare Cu foam and (f, h) $3D Cu_2S NWs/Cu$ after the 50th plating.

Figure S4. SEM images of the morphology of Li deposited on (a, c) bare Cu foam and (b, d) 3D Cu_2S NWs/Cu with current density of 0.5 mA cm⁻² for a total capacity of 2 mAh cm⁻² after 50 cycles.

Figure S5. Illustration of the discharge/charge process of the 3D Cu₂S NWs/Cu current collector.

Figure S6. (a) CV for the as-prepared 3D Cu₂S NWs/Cu-Li cell. (b) S2p XPS spectra analysis of the SEI

layers for the 3D Cu₂S NWs/Cu current collector.

Figure S7. Coulombic efficiency of bare Cu foam and 3D Cu₂S NWs/Cu at 0.5 mA cm⁻² with a total capacity of 1 mAh cm⁻².

Figure S8. Long cycling performance of 3D Cu₂S NWs/Cu at a current density of 1 mA cm⁻² with a total capacity of 1 mAh cm⁻². Inset shows the voltage-time curve with cycle time for 3D Cu₂S NWs/Cu.

Figure S9. Coulombic efficiency of $Cu(OH)_2$ NWs/Cu current collector at 1 mA cm⁻² with a total capacity of 1 mAh cm⁻² and (b) Voltage profiles for Li nucleation on the $Cu(OH)_2$ NWs/Cu current collector.

Figure S10. Electrochemical impedance spectra (EIS) of bare Cu foam and 3D Cu_2S NWs/Cu (a) after 5 cycles and (b) after 50 cycles.

Figure S11. Voltage-time profiles of symmetric LilCu-Li and Lil3D Cu₂S NWs/Cu-Li cells at 1 mA cm⁻² with a cycling capacity of 1 mAh cm⁻².

Figure S12. Cycling performance of full cell with LiFePO₄ cathode and Li anode at 0.5 C.