Electronic Supplementary Information

Synergistic design of N, O codoped honeycomb carbon electrode and ionogel electrolyte enabling all-solid-state supercapacitor with an ultrahigh energy density

Ziyang Song,^a Liangchun Li,^a Dazhang Zhu,^a Ling Miao,^a Hui Duan,^a Zhiwei Wang,^b Wei Xiong,^c Yaokang Lv,^d Mingxian Liu,^{*ab} and Lihua Gan^{*a}

^a Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China.

^b State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, P. R. China.

^c Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430073, P. R. China.

^d College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.

*Corresponding Authors

E-mail: liumx@tongji.edu.cn, ganlh@tongji.edu.cn

Table S1	Synthesis	parameters	of HPC ^a
----------	-----------	------------	---------------------

Samples	Effect	Water	Temperature	
Samples	factors	(mL)	(°C)	
HPC-1		120	700	
HPC-2	Solvent	180	700	
HPC-3		240	700	
HPC-4		180	600	
HPC-5	Temperature	180	800	
HPC-6		180	900	

^{*a*}Temperature: activation temperature; S_{BET} : specific surface area; N, O: nitrogen and oxygen contents of HPC; C_{m} : gravimetric specific capacitance of HPC electrodes tested in three-electrode system using KOH electrolyte.

Fig. S1 SEM image of SiO₂.

Fig. S2 High-resolution XPS spectra of O 1s (a-c) and N 1s (d-f) for HPC-4 (a, d), HPC-5 (b, e)

and HPC-6 (c, f) prepared at different activation temperatures.

Fig. S3 The water contact angles of HPC (a–f) and commercial activated carbon (AC, g).

Table S2 Elemental compositions (wt.%) of HPC and relative contents of N and O species to N1s and O 1s in HPC.

Samples N	_	N-6 (%)	N-5 (%)	N-Q (%)	O-1 (%)	O-2 (%)	O-3 (%)	
	N	0	398.1 eV	399.8 eV	401.3 eV	530.5 eV	531.8 eV	533.7 eV
HPC-1	8.72	15.73	31.18	34.53	34.29	29.49	42.78	27.73
HPC-2	6.90	10.17	24.94	59.68	15.39	36.56	38.29	25.15
HPC-3	6.51	10.75	26.37	55.74	17.89	28.48	48.44	23.08
HPC-4	10.23	14.04	33.45	31.86	34.69	22.13	48.01	29.86
HPC-5	5.10	10.51	21.95	32.55	45.50	30.07	41.42	28.51
HPC-6	2.39	12.64	26.18	59.71	14.11	38.97	38.13	22.90

Fig. S4 XRD patterns (a) and Raman spectra (b) of HPC.

Table S3 Components of the equivalent circuit fitted for the impedance spectra.

Samples	$R_{ m s}\left(\Omega ight)$	$R_{ m ct}\left(\Omega ight)$	$Z_{ m w}\left(\Omega ight)$
HPC-1	0.29	1.12	0.58
HPC-2	0.27	0.98	0.56
HPC-3	0.32	3.46	0.84
HPC-4	0.48	1.34	0.77
HPC-5	0.37	3.07	0.73
HPC-6	0.52	1.80	0.61

Fig. S6 Specific capacitances of HPC electrodes at different current densities.

Table S4 Comparison of surface areas (S_{BET}), heteroatom contents, specific capacitances (C_m) under different current densities (I_m) of reported heteroatom-doped carbon electrodes tested in a three-electrode system using 6 M KOH in the literatures.

Materials	$S_{\rm BET}$ (m ² g ⁻¹)	N/O (wt.%)	$C_{\rm m}$ (F g ⁻¹)	$I_{\rm m}$ (A g ⁻¹)	Ref.
N-doped 3D graphene networks	583	15.8/6.93	380	0.6	1
N-doped graphene	_	4.2/14.5	312	0.1	2
Graphene nanocomposite	2416	2/-	176	0.5	3
3D binary-heteroatom doped carbon	1532	14.5/-	341	0.1	4
Porous carbon	3122	-/9.84	327	0.5	5
3D porous carbon	1874	5.11/-	404	0.1	6
2D carbons	594	4.04/-	233	1	7
N-doped graphdiyne	679	3.67/-	250	0.2	8
N-doped carbon nanofibers	418	7.85/5.35	307	1	9
Ultrathin porous carbon nanosheets	1192	-/10.6	233	1	10
N-doped carbon nanosheets	2494	4.7/-	242	0.1	11
N-doped carbons	329	13.44/-	374	0.1	12
HPC-2	2379	6.90/10.17	533	0.5	This
			402	1	work

Fig. S7 The relationship between surface areas and C_{EDLC} of HPC electrodes.

References

- 1 W. Zhang, C. Xu, C. Ma, G. Li, Y. Wang, K. Zhang, F. Li, C. Liu, H.M. Cheng, Y. Du, N. Tang, W. Ren, *Adv. Mater.*, 2017, **29**, 1701677.
- 2 K. Wang, M. Xu, Y. Gu, Z. Gu, J. Liu, Q.H. Fan, Nano Energy, 2017, 31, 486-494.
- 3 L. Feng, K. Wang, X. Zhang, X. Sun, C. Li, X. Ge, Y. Ma, *Adv. Funct. Mater.*, 2018, **28**, 1704463.
- 4 Y. Liu, X. Qiu, X. Liu, Y. Liu, L.-Z. Fan, J. Mater. Chem. A, 2018, 6, 8750-8756.
- 5 J. Yang, H. Wu, M. Zhu, W. Ren, Y. Lin, H. Chen, F. Pan, Nano Energy, 2017, 33, 453-461.
- 6 Y. Liu, Z. Xiao, Y. Liu, L.-Z. Fan, J. Mater. Chem., A 2018, 6, 160-166.
- 7 W. Liu, M. Ulaganathan, I. Abdelwahab, X. Luo, Z. Chen, S.J. Rong Tan, X. Wang, Y. Liu, D. Geng, Y. Bao, J. Chen, K.P. Loh, ACS Nano, 2018, 12, 852–860.
- 8 H. Shang, Z. Zuo, H. Zheng, K. Li, Z. Tu, Y. Yi, H. Liu, Y. Li, Y. Li, *Nano Energy*, 2018, 44, 144–154.
- 9 L.-F. Chen, Y. Lu, L. Yu, X. Lou, Energy Environ. Sci., 2017, 10, 1777-1783.
- 10 K. Jayaramulu, D.P. Dubal, B. Nagar, V. Ranc, O. Tomanec, M. Petr, K.K.R. Datta, R. Zboril,
 P. Gomez-Romero, R.A. Fischer, *Adv. Mater.*, 2018, **30**, 1705789.
- 11 J. Hou, C. Cao, F. Idrees, X. Ma, ACS Nano, 2015, 9, 2556-2564.
- 12 J.-S.M. Lee, M.E. Briggs, C.-C. Hu, A.I. Cooper, Nano Energy, 2018, 46, 277-289.