Electronic Supporting Information for

Enhancement of photocatalytic H₂ production by metal complex

electrostatic adsorption on TiO₂ (B) nanosheets

Xiangchen Kong, ^a Zhonghui Gao, ^{*b} Yue Gong, ^a Huiming Huang, ^a Haifeng Wang, ^b Porun Liu, ^c Huajie Yin, ^c

Zhenduo Cui,^a Zhaoyang Li,^a Yanqin Liang,^a Shengli Zhu,*^a Yunhui Huang *^b and Xianjin Yang ^a

- ^{b.} School of Materials Science and Engineering, Tongji University, Shanghai 201804, China.
- ^{c.} Centre for Clean Environment and Energy, Gold Coast Campus, Griffith University, Queensland 4222, Australia.

Corresponding Author

*SLZ: <u>slzhu@tju.edu.cn</u>

*ZHG: gzhh05080201@163.com

*YHH: huangyh@tongji.edu.cn

a. School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China.

Figure S1. Structure characterizations of as-synthesized Ni(II)NC-TiO₂ (B) nanosheets. (a-b) TEM, HRTEM images of Ni(II)NC-TiO₂ (B); (c) the overlay mapping elements of Ti, O and Ni.

Figure S2. Structure characterizations of as-synthesized Cu(II)NO-TiO₂ (B) nanosheets. (a-b) TEM, HRTEM images of Cu(II)NO-TiO₂ (B); (c) the overlay mapping elements of Ti, O and Cu.

Figure S3. XRD patterns of the Co(III)NC, Ni(II)NC and Cu(II)NO metal complexes, and Co(III)NC/Ni(II)NC/Cu(II)NO-TiO_2 (B) nanosheets by electrostatic adsorption.

Figure S4.(a) FTIR and (b) BET of the pristine TiO_2 (B) and $Co(III)NC/Ni(II)NC/Cu(II)NO-TiO_2$ (B) nanosheets by electrostatic adsorption.

Figure S5. XPS spectra of (a) Ti 2p, (b) O 1s and (c) Co 2p region of Co(II)NC-TiO₂ (B); (d) Co 2p spectra of pristine Co(II)NC.

Figure S6. XPS spectra of (a) Ti 2p, (b) O 1s and (c) Ni 2p region of Ni(II)NC-TiO₂(B); (d) Ni 2p spectra of pristine Ni(II)NC.

Figure S7. XPS spectra of (a) Ti 2p, (b) O 1s and (c) Cu 2p region of Cu(II)NO-TiO₂ (B); (d) Cu 2p spectra of pristine Cu(II)NO.

Figure S8. The overall profile of Co K-edge XANES spectra of Co(III)NC and Co(III)NC-TiO₂ (B) indicated the presence of trivalent Co.

Figure S9. The actual adsorption ratio amounts of Co, Ni and Cu on TiO_2 (B) tested by ICP-OES.

Figure S10. Photocatalytic H_2 evolution activities of Co(III)NC-TiO₂(B) with different loading contents.

Figure S11. AQE of pristine TiO₂ (B), Co(III)NC-TiO₂ (B), Ni(II)NC-TiO₂ (B) and Cu(II)NO-TiO₂ (B) nanosheets at 400nm and 420nm.

Figure S12. the decomposition rate of Co element with different photocatalytic reaction time

Figure S13. (a) UV-Vis diffuse reflectance spectra of pure TiO₂ (B), Ni(II)NC-TiO₂ (B) and Ni(II)NC and (b) transform of Kubelka-Munk function versus the energy of photon of TiO₂ (B), Ni(II)NC-TiO₂ (B); (c) UV-Vis diffuse reflectance spectra of pure TiO₂ (B), Cu(II)NO-TiO₂ (B) and Cu(II)NO and (d) transform of Kubelka-Munk function versus the energy of photon of TiO₂ (B), Cu(II)NO-TiO₂ (B).

Figure S14. Transient photocurrent responses of Co(III)NC/Ni(II)NC/Cu(II)NO-TiO₂ (B) nanosheets using a bias potential of 0.6 V (vs. Ag/AgCl) under on-off cycling irradiation.

Figure S15. Photocatalytic H₂ evolution activities of Co(III)NC-TiO₂ (B) in aqueous methanol solution with different pH adjusted by dropping NH_3 ·H₂O solution.

Semiconductor	Modification method	Surface specific area	H ₂ evolution	Published time	references
Fe ₂ O ₃ /TiO ₂	Polycrystal mixed growth	28 m²/g	217.6 μmol/(g•h)	2014	1
Ag/TiO ₂	Photodeposition method	15 m²/g	220 µmol/(g•h)	2015	2
Core–Shell TiO ₂	Hydrothermal treatment with	1.6 m²/g	268.3 µmol/(g∙h)	2016	3
	hydrofluoric acid				
	Hydrothermal treatment of				
ZnTiO ₃ /TiO ₂	zeolitic imidazolate	132 m²/g	192.5 μmol/(g•h)	2017	4
	framework				
Branched TiO_2	Alkali-hydrothermal method	205.5 m²/g	410 μmol/(g•h)	2017	5
Au/TiO ₂	Sol immobilization method		65 µmol∕(g∙h)	2018	6
RGO/ TiO₂	Sol-gel electrospinning	55 m²/g	149 µmol/(g•h)	2018	7
	method				
Plasma TiO ₂ (B)	Plasma engraving	515 m²/g	155 μmol/(g•h)	2018	8
TiO ₂ (B)-ZnO	Reflux method	23.3 m²/g	193µmol/(g•h)	2018	9
Au/TiO ₂ -gC ₃ N ₄	Sol-gel and chemical	75 m²/g	350 µmol/(g∙h)	2018	10
	reduction				10
Pt- TiO ₂ (B)	Photodeposition method	301 m²/g	869.4 µmol/(g∙h)		This work
Co(III)NC-TiO ₂ (B)	Electrostatic adsorption	316 m²/g	497.8 µmol/(g∙h)		This work
Ni(II)NC-TiO ₂ (B)	Electrostatic adsorption	309 m²/g	431.6 μmol/(g•h)		This work
Cu(II)NO-TiO ₂ (B)	Electrostatic adsorption	321 m²/g	364.6 µmol/(g∙h)		This work

Table S1 Photocatalytic H₂ evolution performance of TiO₂ materials

References

- 1. K. Afroz, M. Moniruddin, N. Bakranov, S. Kudaibergenov and N. Nuraje, *J. Mater. Chem. A*, 2018, DOI: 10.1039/c8ta04165b.
- 2. Y. Choi, H.-i. Kim, G.-h. Moon, S. Jo and W. Choi, *ACS Catal.*, 2016, **6**, 821-828.
- 3. Y. Yang, G. Liu, J. T. Irvine and H. M. Cheng, *Adv. Mater.*, 2016, **28**, 5850-5856.
- H. Tian, S. Wang, C. Zhang, J.-P. Veder, J. Pan, M. Jaroniec, L. Wang and J. Liu, *J. Mater. Chem. A*, 2017, 5, 11615-11622.
- 5. G. Yang, L. Wang, S. Peng, J. Wang, D. Ji, W. Yan and S. Ramakrishna, *Small*, 2017, **13**.
- 6. J. Nie, J. Schneider, F. Sieland, L. Zhou, S. Xia and D. W. Bahnemann, *RSC Adv.*, 2018, **8**, 25881-25887.
- 7. D. Xu, L. Li, R. He, L. Qi, L. Zhang and B. Cheng, *Appl. Surf. Sci.*, 2018, **434**, 620-625.
- 8. X. Kong, Y. Xu, Z. Cui, Z. Li, Y. Liang, Z. Gao, S. Zhu and X. Yang, *Appl. Catal. B: Environ.*, 2018, **230**, 11-17.
- 9. C. Sun, Q. Xu, Y. Xie, Y. Ling and Y. Hou, J. Mater. Chem. A, 2018, 6, 8289-8298.
- 10. C. Marchal, T. Cottineau, M. G. Méndez-Medrano, C. Colbeau-Justin, V. Caps and V. Keller, *Advanced Energy Mater.*, 2018, **8**, 1702142.