Supporting information

Vanadium Dioxide-Reduced Graphene Oxide Binary Host as an Efficient Polysulfide Plague for High Performance Lithium Sulfur Batteries

Sha Li¹, Yuan Cen¹, Qin Xiang, Muhammad Kashif Aslam, Bingbing Hu, Wei Li, Ya Tang, Qi

Yu, Yuping Liu* and Changguo Chen*

College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China.

Equal Contribution¹

AUTHOR INFORMATION

Corresponding author:

Name: Changguo Chen

Tel: +86 13608357956

E-mail: cgchen@cqu.edu.cn (C.G. Chen)

Name: Yuping Liu Tel: +86 13594157660 E-mail: <u>liuyuping@cqu.edu.cn</u>

Notes

The authors declare no competing financial interest.

Figure captions

Fig. S1. EDX spectrum (a), STEM image (b) and corresponding elemental mapping (c-d) of the pure VO₂.

Fig. S2. EDX spectrum (a); SEM image (b) and corresponding elemental mapping (cf) of the VO₂@rGO/S composite

Fig. S3. Raman spectra of the pure VO₂ (a); XRD patterns of VO₂@rGO-2 binary host (b), VO₂@rGO/S composite (c) and TGA curves of VO₂@rGO/S, rGO/S and S in N₂ atmosphere (d).

Fig. S4. UV-vis absorption spectra of Li_2S_6/DME &DOL solution with the pure VO₂ and rGO, with the inset showing visualized adsorption of blank Li_2S_6/DME &DOL solutions and Li_2S_6/DME &DOL solutions with the VO₂ and rGO, respectively.

Fig. S5. Cross-sectional SEM image of the VO2@rGO/S electrode with different sulfur loading at (a) around 1.5 mg cm⁻² and (b) around 4 mg cm⁻².

Fig. S6. (a) DualScope MP0R thickness gauge of the principles; (b) The standard card; The thickness of the VO₂@rGO/S electrode with different sulfur loading at (c) around 1.5 mg cm^{-2} and (d) around 4 mg cm⁻².

Fig. S7. The comparison of peak potentials (a) and corresponding onset voltages (b) of the VO₂@rGO/S, rGO/S and VO₂/S composites; CV profiles of rGO/S (c) and VO₂/S (d) composites at various scan rates; Cathodic one (e) and two (f) currents of the VO₂@rGO/S, rGO/S and VO₂/S composites and their corresponding the square root of scan rates.

Fig. S8. Charge-discharge voltage profiles (a) and Cycle performance (b) of the pure VO_2 in the same electrolyte within the voltage window of 1.7-2.8 V for LSBs system.

Fig. S9. (a) Comparison of the rate capacities and capacity retentions of the $VO_2@rGO/S$, rGO/S and VO_2/S composites; Galvanostatic charge/discharge profiles of the $VO_2@rGO/S$ (b), rGO/S (c) and VO_2/S (d) composites at various rates.

Fig. S10. (a)Galvanostatic charge/discharge profiles of the VO₂@rGO/S composite at at 1 C; (b) CV curves (0.1 mV s⁻¹) of the VO₂@rGO/S and VO₂@rGO/S-2 composites; (e) Long-term cycling performance and Coulombic efficiency of the

 $VO_2@rGO/S-2$ at 3 C; (d) EIS Nyquist plots of the $VO_2@rGO/S$, rGO/S, VO_2/S and $VO_2@rGO/S-2$ composites before initial discharge, the inset is equivalent circuit of fresh cells; (e) The application of $VO_2@rGO/S$ electrode, powering 20 light-emitting diodes.

Fig. S11. (a) The cycling performance of the VO₂@rGO/S cathode with 4 mg cm⁻² sulfur loading at a current density of 0.335 mA cm⁻²and 3.35 mA cm⁻²; (b) The corresponding charge-discharge profile on 1^{st} , 2^{nd} , 10^{th} , 20^{th} cycle, respectively.

Fig. S12. SEM images of $VO_2@rGO/S$ and rGO/S (a,c) fresh and (b,d) cycled cathode at 1C.

Table S1

A comparison of electrochemical performance of $VO_2@rGO/S$ composite between this work and some other cathode materials for LSBs in published literatures.

Table S2

Electrode Resistance Obtained from the Equivalent Circuit Fitting of the VO₂@rGO/S, rGO/S, VO₂/S and VO₂@rGO/S-2 composites before initial discharge.

Fig. S1. EDX spectrum (a), STEM image (b) and corresponding elemental mapping (c-d) of the pure VO₂.

Fig. S2. EDX spectrum (a); SEM image (b) and corresponding elemental mapping (c-

f) of the VO₂@rGO/S composite

Fig. S3. Raman spectra of the pure VO₂ (a); XRD patterns of VO₂@rGO-2 binary host (b), VO₂@rGO/S composite (c) and TGA curves of VO₂@rGO/S, rGO/S and S in N₂ atmosphere (d).

Fig. S4. UV-vis absorption spectra of $Li_2S_6/DME\&DOL$ solution with the pure VO₂ and rGO, with the inset showing visualized adsorption of blank $Li_2S_6/DME\&DOL$ solutions and $Li_2S_6/DME\&DOL$ solutions with the VO₂ and rGO, respectively.

Fig. S5. Cross-sectional SEM image of the VO2@rGO/S electrode with different sulfur loading at (a) around 1.5 mg cm^{-2} and (b) around 4 mg cm^{-2} .

Fig. S6. (a) DualScope MP0R thickness gauge of the principles; (b) The standard card; The thickness of the VO₂@rGO/S electrode with different sulfur loading at (c) around 1.5 mg cm^{-2} and (d) around 4 mg cm⁻².

Fig. S7. The comparison of peak potentials (a) and corresponding onset voltages (b) of the VO₂@rGO/S, rGO/S and VO₂/S composites; CV profiles of rGO/S (c) and VO₂/S (d) composites at various scan rates; Cathodic one (e) and two (f) currents of the VO₂@rGO/S, rGO/S and VO₂/S composites and their corresponding the square root of scan rates.

Fig. S8. Charge-discharge voltage profiles (a) and Cycle performance (b) of the pure VO_2 in the same electrolyte within the voltage window of 1.7-2.8 V for LSBs system.

As is well known, although the VO_2 with good electrochemical performance used as a lithium storage material was reported in LIBs,¹⁵⁻¹⁸ the electrolytes are the critical role for their corresponding energy storage systems. In LIBs, the electrolyte is ethylene carbonate, not ethers electrolytes, which have been seriously hampered by high working voltage.

Fig. S9. (a) Comparison of the rate capacities and capacity retentions of the $VO_2@rGO/S$, rGO/S and VO_2/S composites; Galvanostatic charge/discharge profiles of the $VO_2@rGO/S$ (b), rGO/S (c) and VO_2/S (d) composites at various rates.

Fig. S10. (a) Galvanostatic charge/discharge profiles of the VO₂@rGO/S composite at at 1 C; (b) CV curves (0.1 mV s⁻¹) of the VO₂@rGO/S and VO₂@rGO/S-2 composites; (e) Long-term cycling performance and Coulombic efficiency of the VO₂@rGO/S-2 at 3 C; (d) EIS Nyquist plots of the VO₂@rGO/S, rGO/S, VO₂/S and

 $VO_2@rGO/S-2$ composites before initial discharge, the inset is equivalent circuit of fresh cells; (e) The application of $VO_2@rGO/S$ electrode, powering 20 light-emitting diodes.

Fig. S11. (a) The cycling performance of the VO₂@rGO/S cathode with 4 mg cm⁻² sulfur loading at a current density of 0.335 mA cm⁻²and 3.35 mA cm⁻²; (b) The corresponding charge-discharge profile on 1^{st} , 2^{nd} , 10^{th} , 20^{th} cycle, respectively.

Fig. S12. SEM images of $VO_2@rGO/S$ and rGO/S (a,c) fresh and (b,d) cycled cathode at 1C.

Table S1

A comparison of electrochemical performance of $VO_2@rGO/S$ composite between this work and some other cathode materials for LSBs in published literatures.

Cathode Materials	Sulfur Loding (wt%)	Rate (C)	Discharge Capacity (mAh g ⁻¹)	Capacity after cycling	Ref.
VO ₂ /G/S	70	0.2	1405	990(100 th)	1
TiO ₂ /rGO/S	60	0.2	~1200	666(300 th)	2
S/SnO ₂ @C	58	200 mA/g	1473.1	764 (100 th)	3
PPy@MnO2@S	74.25	0.2	1372	964(200 th)	4
V ₂ O ₅ /C/S	~	0.2	1520	940(50 th)	5
VO ₂ @rGO/S	76.1	0.2	1358	1049(370 th)	this work

Table S2

Electrode Resistance Obtained from the Equivalent Circuit Fitting of the VO₂@rGO/S, rGO/S, VO₂/S and VO₂@rGO/S-2 composites before initial discharge.

Sample	Re(Ω)	Rct	We
VO ₂ @rGO/S	2.7	22.0	1065
VO ₂ /S	0.5	58.9	2056
rGO/S	1.9	40.2	1937
VO ₂ @rGO/S-2	0.7	24.4	1024

References

- Y. Song, W. Zhao, X. Zhu, L. Zhang, Q. Li, F. Ding, Z. Liu and J. Sun, ACS Appl Mater Interfaces, 2018, 10, 15733-15741.
- J. Song, J. Zheng, S. Feng, C. Zhu, S. Fu, W. Zhao, D. Du and Y. Lin, *Carbon*, 2018, 128, 63-69.
- Y. Li, B. Shi, W. Liu, R. Guo, H. Pei, D. Ye, J. Xie and J. Kong, Electrochimica Acta, 2018, 260, 912-920.
- B. Cao, Li, B. Hou, Y. Mo, L. Yin and Y. Chen, *ACS Appl Mater Interfaces*, 2016, 8, 27795–27802.
- 5. M.-S. Kim, E. S. Shin, J.-S. Kim, W. I. Cho and S. H. Oh, *Journal of Electroceramics*, 2014, **33**, 142-148.