Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2019

Electronic Supplementary Information

Experimental

Materials: Sodium molybdate (Na₂MoO₄), lithium perchlorate (LiClO₄), thiourea (CH₄N₂S), ammonium chloride (NH₄Cl), salicylic acid (C₇H₆O₃), sodium citrate dehydrate (C₆H₅Na₃O₇·2H₂O), *p*-dimethylaminobenzaldehyde (C₉H₁₁NO), sodium nitroferricyanide dihydrate (C₅FeN₆Na₂O·2H₂O), sodium hypochlorite solution (NaClO) and graphite powder were purchased from Aladdin Ltd. (Shanghai, China). Nafion (5 wt%) solution was purchased from Sigma-Aldrich Chemical Reagent Co., Ltd. Hydrochloric acid, nitric acid, sulfuric acid, hydrogen peroxide, hydrazine monohydrate (N₂H₄·H₂O), and ethyl alcohol (C₂H₅OH) were purchased from Kelong chemical Ltd. The ultrapure water used throughout all experiments was purified through a UP system. All reagents were analytical reagent grade without further purification.

*Preparation of MoS*₂ *reduced graphene oxide hybrid*: Firstly, GO was synthesized by a modified Hummer's method. Then the GO suspension (30mg) and Na₂MoO₄ (300mg) solution were mixed. The mixed solutions (30 mL) were stirred for 10 minutes. After that, 0.63 g of CH₄N₂S was added and dissolved in the mixture. The resulting mixture was ultrasonicated for 30 min and then transferred to a 50 mL Teflon-lined stainless-steel autoclave for 24 h at 200 °C. The resulting product was collected by centrifugation at 6000rpm about 5 min, and washed with deionized water and absolute ethanol for several times and dried at room temperature under vacuum for 24 h followed by further thermal treatment at 800 °C in an Ar environment for 2 h. It should be noted that GO was translated into rGO in the process of reaction. The resulted composites were denoted as MoS₂-rGO. For comparison, we also synthesized rGO or MoS₂ without the addition of Na₂MoO₄ or GO under the same conditions.

Characterizations: XRD analysis was performed using a LabX XRD-6100 X-ray diffractometer with Cu K α radiation ($\lambda = 1.5418$ Å) at 40 kV and 40 mA. SEM images were collected on a XL30 ESEM FEG scanning electron microscope at an accelerating voltage of 20 kV. The structures of the samples were determined by TEM

images on a HITACHI H-8100 electron microscopy (Hitachi, Tokyo, Japan) operated at 200 kV. XPS measurements were performed on an ESCALABMK II X-ray photoelectron spectrometer using Mg as the exciting source. Raman spectra were obtained by a Renishaw Invia confocal Raman microprobe at 532 nm laser excitation. The absorbance data of spectrophotometer were measured on UV-Vis spectrophotometer. The specific surface area of nitrogen sorption isotherms was performed at -196°C in a Micromeritics Instrument Corporation TriStar II 3020 volumetric adsorption system. The data of ion chromatography were measured on Swiss Wang tong ECO. 1H-NMR measurements were performed on a Bruker Avance III 400 MHz spectrometer and dimethyl sulfoxide-d6 was used as an internal to calibrate the chemical shifts in the spectra.

Electrochemical Measurements: Electrochemical NRR measurements were performed in a two-compartment cell separated by Nafion 211 membrane using a CHI 660E electrochemical analyzer (CH Instruments, Inc.). The electrochemical experiments were carried out with a three-electrode configuration using graphite rod as the counter electrode and Ag/AgCl electrode (saturated KCl) as the reference electrode. The working electrode was a CP with catalysts. In a typical synthesis of electrode, 10 mg of the catalyst was dispersed in 1 mL of alcohol containing Nafion solution (5 wt %), followed by ultrasonic treatment for 30 min to form a homogeneous ink. Then, 10 μ L of the ink was loaded onto a carbon paper electrode with area of 1 x 1 cm² and dried under ambient condition, the catalyst loading mass is 0.1 mg. The potentials reported in this work were converted to RHE scale via calibration with the following equation: E (vs. RHE) = E (vs. Ag/AgCl) + 0.256 V and the presented current density was normalized to the geometric surface area. For electrochemical N₂ reduction, chronoamperometry tests were conducted in N₂-saturated 0.1 M LiClO₄ solution (LiClO₄ electrolyte was purged with N₂ for 30 min before measurement).

*Determination of NH*₃: Concentration of produced NH₃ was spectrophotometrically determined by the indophenol blue method.¹ Typically, 2 mL electrolyte was taken from the cathodic chamber, and then 2 mL of 1 M NaOH solution containing 5% salicylic acid and 5% sodium citrate was added into this solution. Subsequently, 1 mL

of 0.05 M NaClO and 0.2 mL of 1% C₅FeN₆Na₂O·2H₂O were add into the above solution. After standing at room temperature for 1 h, UV-Vis absorption spectrum was measured at a wavelength of 655 nm. The concentration-absorbance curves were calibrated using standard NH₃ solution with a serious of concentrations. The fitting curve (y = 0.2377x + 0.02499, R² = 0.997) shows good linear relation of absorbance value with NH₃ concentration by three times independent calibrations.

Determination of hydrazine (N₂H₄): N₂H₄ presented in the electrolyte was estimated by the method of Watt and Chrisp.² A mixed solution of 5.99 g C₉H₁₁NO, 30 mL HCl and 300 mL ethanol was used as a color reagent. Calibration curve was plotted as follow: firstly, preparing a series of reference solutions; secondly, adding 5 mL above prepared color reagent and stirring 20 min at room temperature; finally, the absorbance of the resulting solution was measured at 455 nm, and the yields of N₂H₄ were estimated from a standard curve using 5 mL residual electrolyte and 5 mL color reagent. Absolute calibration of this method was achieved using N₂H₄·H₂O solutions of known concentration as standards, and the fitting curve shows good linear relation of absorbance with N₂H₄·H₂O concentration (y = 0.6166x + 0.0398, R² = 0.997) by three times independent calibrations

FE determination: The FE for N_2 reduction was defined as the amount of electric charge used for synthesizing NH_3 divided the total charge passed through the electrodes during the electrolysis. The total amount of NH_3 produced was measured using colorimetric methods. Assuming three electrons were needed to produce one NH_3 molecule, the FE could be calculated as follows:

$$FE = 3 \times F \times [NH_4^+] \times V / (17 \times Q)$$

The rate of NH₃ formation was calculated using the following equation:

Ammonia formation rate = $[NH_4^+] \times V / (m \times t)$

Where F is the Faraday constant, C_{NH_3} is the measured NH₃ concentration, V is the volume of the LiClO₄ electrolyte for NH₃ collection, t is the reduction time and m_{cat.} is the catalyst mass.

Computational Details: All DFT calculations were carried out using the Vienna Ab

initio Simulation Package (VASP).^{3,4} The interaction between valence electron and ion core is described by the projector-augmented wave method (PAW).⁵ Generalized gradient approximation (GGA) with Perdew–Burke–Ernzerhof (PBE) functional⁶ is applied to describe the electron exchange-correlation. For the MoS₂/graphene systems, theoretical studies have been reported to understand the structural and electrical properties.^{7–10} Recently studies have shown that the edge of MoS₂ is electrocatalytically active site and the Mo-edge plays the key role for N₂ reduction reaction.¹¹ In order to understand the effect of graphene on the N₂ reduction on MoS₂ edge, the structure of MoS₂-rGO was constructed. The reported band structure of MoS₂-rGO showed that enormous bands appear at the Fermi level and the enhanced electron transfer mainly caused by the MoS₂ edges,⁷ which is responsible for the enhanced catalytic activity observed in our experiment.

Herein, we mainly considered the N₂ reduction process on the MoS₂-rGO structure. The (5×5) graphene–(4×4) MoS₂ was adopted to minimize the lattice mismatch of the sample. The width of MoS₂ is about 10 Å and the distance between the MoS₂ with its periodic image is 15.59 Å, which is large enough to avoid artificial interactions displayed in Figure A. The van der Waals (vdW) correction by Grimme's DFT-D2 method¹² is further added to describe the non-bonded interaction between MoS₂ and graphene. The cutoff of kinetic energy was 450 eV and the total energy was converged to less than 10^{-5} eV. The atomic positions were optimized until the force on each atom was less 0.02 eV/Å and dipole corrections in the z direction were considered. In order to improve efficiency, the larger supercell was optimized with the Brillouin zone sampling limited to the gamma point. The vacuum layer of 15 Å thickness was set to avoid the interaction between the periodic images. The Gibbs free energy (*G*) of a species is calculated by

G = E + ZPE - TS

where *E* is the total energy of adsorbed species from DFT calculations, ZPE and *S* are the zero-point energy and entropy of a species respectively, and T = 298.15 K. Thermal corrections for gas molecules are from database.¹³

Fig. S1. SEM image of MoS₂.

Fig. S2. HRTEM image for MoS₂-rGO hybrid.

Fig. S3. EDX spectrum of MoS₂-rGO.

Fig. S4. The N_2 adsorption curve of (a) MoS_2 and (b) MoS_2 -rGO.

Fig. S5. (a) Optical photograph of the reactor. (b) Optical photograph of the prepared cathode.

Fig. S6. (a) UV-Vis spectra of indophenol assays with NH_4^+ ions after incubated for 2 h at room temperature. (b) Calibration curve used for estimation of NH_3 . (c) UV-Vis absorption spectra of various N_2H_4 concentrations after incubation for 20 min at room temperature. (d) Calibration curve used for calculation of N_2H_4 concentrations.

Fig. S7. NH_3 yields and FEs for MoS_2 -rGO/CPE at a series of potentials for 2h obtained by ion chromatography.

Fig. S8. (a) CVs and (b) capacitive current densities of MoS₂/CPE. (c) CVs and (d) capacitive current densities of MoS₂-rGO/CPE.

Fig. S9. Nyquist plots of MoS_2 -rGO/CPE and MoS_2 /CPE.

Fig. S10. UV-Vis absorption spectra of the electrolytes estimated by the method of Watt and Chrisp before and after electrolysis in N_2 -saturated 0.1 M LiClO₄ for MoS₂-rGO/CPE.

Fig. S11. UV-Vis absorption spectra of the electrolytes stained with indophenol indicator after 2-h electrolysis under different conditions.

Fig. S12. ¹H NMR spectra of ${}^{15}NH_4{}^+$ calibration solution, after electrolysis at – 0.45 V under ${}^{15}N_2$ and Ar atmosphere on the MoS₂-rGO/CPE.

Fig. S13. UV-Vis absorption spectra of the 0.1 M Na_2SO_4 electrolyte stained with indophenol indicator after continuously supplying N_2 or Ar with no applied voltage.

Fig. S14. XRD patterns for CP and MoS₂-rGO/CP after stability test.

Fig. S15. TEM image for MoS₂-rGO after stability test.

Fig. S16. (Left) Side view of MoS_2 -rGO. The green, yellow and grey balls represent Mo, S and C atoms, respectively. (Right) Different N_2 adsorption sites of MoS_2 . The blue ball represents N atom.

Table S1. Comparison of electrocatalytic N_2 reduction performance for MoS_2 -rGO with other electrocatalysts under ambient conditions.

Catalyst	Electrolyte	NH ₃ yield	FE%	Ref.
MoS2-rGO/CP	0.1 M LiClO ₄	24.82 μg h ⁻¹ mg ⁻¹ _{cat.}	4.58	This work
Pd _{0.2} Cu _{0.8} /rGO	0.1 M KOH	$2.8 \ \mu g \ h^{-1} \ m g^{-1}{}_{cat.}$	4.5	14
Au nanorods	0.1 M KOH	$1.6 \ \mu g \ h^{-1} \ cm^{-2}$	3.88	15
AuHNCs	0.5 M LiClO ₄	$3.90 \ \mu g \ h^{-1} \ cm^{-2}$	30.2	16
Ag nanosheet	0.1 M HCl	$2.83 \ \mu g \ h^{-1} \ cm^{-2}$	4.8	17
Rh	0.1 M KOH	23.88 $\mu g h^{-1} m g^{-1}_{cat.}$	0.217	18
Pd-Co/CuO	0.1 M KOH	$10.04 \ \mu g \ h^{-1} \ mg^{-1}_{cat.}$	2.16	19
Pd/C	0.1M PBS	$4.5 \ \mu g \ h^{-1} \ m g^{-1}{}_{cat.}$	8.2	20
Bi ₄ V ₂ O ₁₁ /CeO ₂	0.1 M HCl	23.21 $\mu g h^{-1} m g^{-1}_{cat.}$	10.16	21
hollow Cr ₂ O ₃ microspheres	0.1 M Na ₂ SO ₄	25.3 μ g h ⁻¹ mg ⁻¹ _{cat.}	6.78	22
γ-Fe ₂ O ₃	0.1 M KOH	$0.212 \ \mu g \ h^{-1} \ mg^{-1}{}_{cat.}$	1.9	23
Fe ₃ O ₄ /Ti	0.1 M Na ₂ SO ₄	$3.42 \ \mu g \ h^{-1} \ cm^{-2}$	2.6	24
Fe ₂ O ₃ -CNT	KHCO ₃	$0.22 \ \mu g \ h^{-1} \ cm^{-2}$	0.15	25
Mo nanofilm	0.01 M H ₂ SO ₄	$1.89 \ \mu g \ h^{-1} \ cm^{-2}$	0.72	26
MoS ₂ /CC	0.1 M Na ₂ SO ₄	$4.94 \ \mu g \ h^{-1} \ cm^{-2}$	1.17	11
Fe-N/C-CNTs	0.1 M KOH	34.83 $\mu g h^{-1} m g^{-1}{}_{cat.}$	9.28	27
MoN	0.1 M HCl	$18.42 \ \mu g \ h^{-1} \ cm^{-2}$	1.15	28
PEBCD/C	0.5 M Li ₂ SO ₄	$1.58 \ \mu g \ h^{-1} \ cm^{-2}$	2.85	29
N-doped porous carbon	0.05 M H ₂ SO ₄	23.8 μ g h ⁻¹ mg ⁻¹ _{cat.}	1.42	30

Sample	Potential (V vs. RHE)	Concentration (NH ₄ ⁺ , mg L ⁻¹)
1	-0.35	0.0152
2	-0.4	0.0464
3	-0.45	0.1431
4	-0.5	0.1024
5	-0.6	0.1009

Table S2. Data obtained from the ion chromatography for NH⁴⁺ concentrations after electrolysis for 2h at a series of potentials.

References

- D. Zhu, L. Zhang, R. E. Ruther and R. J. Hamers, Nat. Mater., 2013, 12, 836– 841.
- 2. G. W. Watt and J. D. Chrisp, Anal. Chem., 1952, 24, 2006-2008.
- 3. G. Kresse and J. Furthmuller, *Phys. Rev. B: Condens. Matter Mater. Phys.*, 1996, **54**, 11169–11186.
- 4. G. Kresse and J. Furthmuller, Comput. Mater. Sci., 1996, 6, 15-50.
- 5. P. E. Blöchl, *Phys. Rev. B: Condens. Matter Mater. Phys.*, 1994, **50**, 17953–17979.
- J. P. Perdew, K. Burke and M. Ernzerhof, *Phys. Rev. Lett.*, 1996, 77, 3865–3868.
- M. Guo, Y. Yang, Y. Leng, L. Wang, H. Dong, H. Liu and W. Li, J. Mater. Chem. C, 2017, 5, 4845–4851.
- X. Li, S. Guo, W. Li, X. Ren, J. Su, Q. Song, A. J. Sobrido and B. Wei, *Nano Energy*, 2019, 57, 388–397.
- W. Hu, T. Wang, R. Zhang and J. Yang, J. Mater. Chem. C, 2016, 4, 1776–1781.
- 10. X. Liu and Z. Li, J. Phys. Chem. Lett., 2015, 6, 3269-3275.
- L. Zhang, X. Ji, X. Ren, Y. Ma, X. Shi, Z. Tian, A. M. Asiri, L. Chen, B. Tang and X. Sun, *Adv. Mater.*, 2018, **30**, 1800191.
- 12. S. Grimme, J. Comput. Chem., 2006, 27, 1787-1799.
- D. R. Lide, Ed. CRC Handbook of Chemistry and Physics, 85th ed.; CRC Press: Boca Raton, FL, 2004.
- M. Shi, D. Bao, S. Li, B. Wulan, J. Yan and Q. Jiang, *Adv. Energy Mater.*, 2018, 8, 1800124.
- D. Bao, Q. Zhang, F. Meng, H. Zhong, M. Shi, Y. Zhang, J. Yan, Q. Jiang and X. Zhang, *Adv. Mater.*, 2017, **29**, 1604799.
- M. Nazemia, S. R. Panikkanvalappila and M. A. E. Sayed, *Nano Energy*, 2018, 49, 316–323.

- H. Huang, L. Xia, X. Shi, A. M. Asiri, and X. Sun, *Chem. Commun.*, 2018, 54, 11427–11430.
- H. Liu, S. Han, Y. Zhao, Y. Zhu, X. Tian, J. Zeng, J. Jiang, B. Xia and Y. Chen, J. Mater. Chem. A, 2018, 6, 3211–3217.
- W. Fu, Y. Cao, Q. Feng, W. R. Smith, P. Dong, M. Ye* and J. Shen, Nanoscale, 2019, DOI:10.1039/C8NR08724E.
- J. Wang, L. Yu, L. Hu, G. Chen, H. Xin and X. Feng, *Nat. Commun.*, 2018, 9, 1795.
- C. Lv, C. Yan, G. Chen, Y. Ding, J. Sun, Y. Zhou and G. Yu, *Angew. Chem.*, *Int. Ed.*, 2018, 57, 6073–6076.
- Y. Zhang, W. Qiu, Y. Ma, Y. Luo, Z. Tian, G. Cui, F. Xie, L. Chen, T. Li, and X. Sun, ACS Catal., 2018, 8, 8540–8544.
- J. Kong, A. Lim, C. Yoon, J. H. Jang, H. C. Ham, J. Han, S. Nam, D. Kim, Y. E. Sung, J. Choi and H. S. Park, *ACS Sustain. Chem. Eng.*, 2017, 5, 10986–10995.
- Q. Liu, X. Zhang, B. Zhang, Y. Luo, G. Cui, F. Xie, and X. Sun, *Nanoscale*, 2018, 10, 14386–14389.
- S. Chen, S. Perathoner, C. Ampelli, C. Mebrahtu, D. Su and G. Centi, *Angew. Chem.*, *Int. Ed.*, 2017, 56, 2699–2703.
- 26. D. Yang, T. Chen and Z. Wang, J. Mater. Chem. A, 2017, 5, 18967–18971.
- Y. Wang, X. Cui , J. Zhao , G. Jia, L. Gu, Q. Zhang, L. Meng, Z. Shi, L. Zheng, C. Wang, Z. Zhang, and W. Zheng, *ACS Catal.*, 2019, 9, 336-344.
- L. Zhang, X. Ji, X. Ren, Y. Luo, X. Shi, A. M. Asiri, B. Zheng, and X. Sun, ACS Sustainable Chem. Eng., 2018, 6, 9550–9554.
- G. Chen, X. Cao, S. Wu, X. Zeng, L. Ding, M. Zhu and H. Wang, J. Am. Chem. Soc., 2017, 139, 9771–9774.
- Y. Liu, Y. Su, X. Quan, X. Fan, S. Chen, H. Yu, H. Zhao, Y. Zhang and J. Zhao, ACS Catal., 2018, 8, 1186–1191.