# **Electronic Supplementary Information**

# Asymmetric Electrodes with Transition Metal Disulfides Heterostructure and Amorphous Bimetallic Hydroxide for Effective Alkaline Water Electrolysis

Xiao Hu Wang<sup>a</sup>, Yu Ling<sup>a</sup>, Bang Lin Li<sup>a</sup>, Xiao Lin Li<sup>a</sup>, Guo Chen<sup>a</sup>, Bai Xiang Tao<sup>a</sup>, Ling Jie Li<sup>b</sup>, Nian Bing Li \*<sup>a</sup>, and Hong Qun Luo \*<sup>a</sup>

<sup>a</sup> School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P.R.

China.

<sup>b</sup> College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, P.R. China.

<sup>\*</sup>Corresponding authors. Tel./fax: +86 23 6825 3237

*E-mail addresses*: linb@swu.edu.cn; luohq@swu.edu.cn

# Experimental

### General

All reagents were purchased from chemical vendors and used without further purification. Carbon cloth (CC) was purchased from Taiwan CeTech Co., Ltd. Sodiummolybdate dihydrate Na<sub>2</sub>MoO<sub>4</sub>·2H<sub>2</sub>O, nickel(II) chloride hexahydrate (NiCl<sub>2</sub>·6H<sub>2</sub>O), and ruthenium (IV) oxide (RuO<sub>2</sub>) were purchased from Sigma-Aldrich, Co., LLC. Shanghai, China. Iron(III) chloride hexahydrate (FeCl<sub>3</sub>·6H<sub>2</sub>O), ammonium sulfate ((NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>), sodium hypophosphite monohydrate (NaPO<sub>2</sub>H<sub>2</sub>·H<sub>2</sub>O), and sublimed sulfur (S) were purchased from Chengdu Kelong Chemical Factory (Chengdu, China). Potassium hydroxide (KOH), ethanol, acetone, edetate disodium (EDTA-Na<sub>2</sub>), nitric acid (wt 68% (HNO<sub>3</sub>)), sodium nitrate (NaNO<sub>3</sub>), and sulfuric acid (wt 98% (H<sub>2</sub>SO<sub>4</sub>)) were purchased from Chongqing Chuandong Chemical (Group) Co., Ltd. (China). Thiourea was purchased from Aladdin Industrial Corporation. Ethylenediamine was purchased from Shanghai Macklin Biochemical Co., Ltd. Nafion (5 wt %) was purchased from Alfa Aesar (China) Chemical Co., Ltd. Pt/C (20 wt % Pt on Vulcan XC-72R) was purchased from Johnson Matthey (Shanghai) Chemical Co., Ltd. Ultrapure water (> 18.2 MΩ cm) was provided by an AquaPro AD2C-00-OR laboratory ultrapure water machine.

X-ray diffraction (XRD) was recorded on a Shimadzu XRD-7000S X-ray diffractometer (Shimadzu, Japan) using Cu K $\alpha$  radiation ( $\lambda$  = 1.5418 Å). Raman spectrum (Renishaw, InVia, UK) was recorded over the frequency range of 100-1000 cm<sup>-1</sup> using a 20 mW air-cooled argon ion laser (532.8 nm). Scanning electron microscopy (SEM) was performed on an SU 8010 FE-SEM (Hitachi, Japan). Transmission electron microscope (TEM) and high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) images were performed on a Tecnai G2-F20 microscope equipped with a field emission gun operating at 200 kV (FEI Corporation, USA). X-ray photoelectron spectroscopy (XPS) study was performed on a Thermo Fisher Scientific ESCALAB 250Xi X-ray photoelectron spectrometer with a monochromatic X-ray source gun type (Al K $\alpha$  hu =1486.6 eV) (Thermo Fisher Scientific, USA).

All the electrochemical measurements were performed using a CHI660E electrochemical workstation at room temperature in a three-electrode electrochemical system (CH Instruments Inc, Shanghai, China). Platinum plate as the counter electrode, Ag/AgCl electrode in saturated KCl solution as the reference electrode, Ni<sub>3</sub>S<sub>2</sub>/MoS<sub>2</sub>-CC and NiFe(OH)<sub>x</sub>@Ni<sub>3</sub>S<sub>2</sub>/MoS<sub>2</sub>-CC (size: 1 cm × 1

S-2

electrodes. Long-time durability test was cm) the working performed using as chronoamperometry at fixed potentials (graphite rod as the counter electrode). All HER/OER measurements are in progress 1.0 M KOH after purification by infusing saturated O<sub>2</sub>. Linear sweep voltammetry (LSV) and cyclic voltammetry (CV) of Ni<sub>3</sub>S<sub>2</sub>/MoS<sub>2</sub>-CC and NiFe(OH)<sub>x</sub>@Ni<sub>3</sub>S<sub>2</sub>/MoS<sub>2</sub>-CC for HER/OER were conducted with a scan rate of 5 mV s<sup>-1</sup>. Data presented in polarization curves and corresponding Tafel plots were all iR-corrected and carried out at 5 mV s<sup>-1</sup>. The electrochemical active surface area (ECSA) was determined from the CV data with an optimized potential window at different scan rates (20, 40, 60, 80, 100, and 120 mV s<sup>-1</sup>). When plotting the  $\Delta j$  (=  $j_{anode} - j_{cathode}$ ) vs. RHE against the scan rate, a linear slope that was twice of the double layer capacitance (C<sub>dl</sub>) was used to calculate the ECSA. Electrochemical impedance spectroscopy (EIS) was performed in the frequency range of 100 kHz to 0.01 Hz with an amplitude of 5 mV. For water electrolysis, two-electrode electrolyzer was constructed using Ni<sub>3</sub>S<sub>2</sub>/MoS<sub>2</sub>-CC and NiFe(OH)<sub>x</sub>@Ni<sub>3</sub>S<sub>2</sub>/MoS<sub>2</sub>-CC as the cathode and anode, respectively. The recorded potentials were adjusted by the equation: E(RHE) = E(Ag/AgCl) + (0.2012 + 0.059 pH) V. The turnover frequency (TOF) value is calculated from equation TOF  $(s^{-1}) = (j \times A)/(4 \times F \times n)$  in which j (A cm<sup>-2</sup>) represents the measured current density at overpotential of 340 mV, A (cm<sup>2</sup>) represents the area of CC-based electrodes, F represents the Faraday constant (96485.3 C mol<sup>-1</sup>), number 4 means that 4 electrons are required to generate one molecule of O<sub>2</sub>, and *n* represents the moles of coated metal atom.

## Synthesis of MoS<sub>2</sub>-CC

Typically, CC (1 cm × 1.5 cm) was treated with HNO<sub>3</sub>, ultrapure water, acetone, and ethanol for several times and dried at 60 °C for overnight before use. Then, 0.061 g of Na<sub>2</sub>MoO<sub>4</sub>·2H<sub>2</sub>O and 0.077 g of thiourea were dissolved in 22 mL of ultrapure water under continuous stirring over 30 min. The transparent solution was transferred to a 50 mL Teflon-lined stainless steel autoclave. Treated CC was dipped in the autoclave, and the autoclave was maintained at 200 °C for 24 h in an oven. After autoclave cooled down to room temperature, the MoS<sub>2</sub>-CC was obtained. The sample was washed with ultrapure water and ethanol for several times, and then dried at 60 °C for overnight.

#### Synthesis of Ni<sub>3</sub>S<sub>2</sub>/MoS<sub>2</sub>-CC

Briefly, 16 mL of ethylenediamine was dissolved in 16 mL of ethanol and stirred for over 10 min. The transparent solution was transferred to a 50 mL Teflon-lined stainless steel autoclave. MoS<sub>2</sub>-CC, 0.064g of sulfur powder, and 0.714 g of NiCl<sub>2</sub>·6H<sub>2</sub>O were placed in the autoclave. Then, the autoclave was sealed after ultrasonic for 10 min and maintained at 160 °C for 6 h in an oven. After autoclave cooled down to room temperature, the Ni<sub>3</sub>S<sub>2</sub>/MoS<sub>2</sub>-CC was obtained. The sample was washed with ultrapure water and ethanol for several times, and then dried at 60 °C for overnight.

#### Synthesis of NiFe(OH)<sub>x</sub>@Ni<sub>3</sub>S<sub>2</sub>/MoS<sub>2</sub>-CC

The electrodeposition was carried out with three-electrode electrochemical cell containing Ni<sub>3</sub>S<sub>2</sub>/MoS<sub>2</sub>-CC as the working electrode, platinum plate as the counter electrode and Ag/AgCl electrode in saturated KCl solution as the reference electrode. Electrolyte consisted of 80 mM NiCl<sub>2</sub>·6H<sub>2</sub>O, 0.2 M Na<sub>3</sub>C<sub>6</sub>H<sub>5</sub>O<sub>7</sub>·2H<sub>2</sub>O, 0.45 M (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>, and 0.55 M NaPO<sub>2</sub>H<sub>2</sub>·H<sub>2</sub>O. Subsequently, ultra-thin Ni film was fabricated through controlled current electrolysis under 5 mA cm<sup>-2</sup> at room temperature using CHI660E potentiostat. The optimized Ni film deposition time has been determined to be 10 min. After deposition, the precursor with thin Ni film was carefully rinsed by water and acetone. Moreover, 0.101 g of FeCl<sub>3</sub>·6H<sub>2</sub>O and 0.212 g of NaNO<sub>3</sub> were dissolved in 50 mL of ultrapure water. The solution was heated at 100 °C for over 5 min. Then, the precursor was immersed in the hot solution and kept at 100 °C for 10 s. The final sample denoted as NiFe(OH)<sub>x</sub>@Ni<sub>3</sub>S<sub>2</sub>/MoS<sub>2</sub>-CC was washed with water and ethanol for several times and dried in vacuum overnight.

#### Synthesis of 20 wt % Pt/C-CC and RuO<sub>2</sub>-CC

To fabricate Pt/C-CC, commercial 20 wt % Pt/C powder was firstly dispersed in 920  $\mu$ L of solution with a ratio of v(H<sub>2</sub>O)/v(ethanol) = 1/2, then 80  $\mu$ L of Nafion was added. The mixture was sonicated over 20 min to obtain a homogeneous slurry. The slurry was coated onto a piece of treated CC with well-distribution and evaporated naturally under ambient conditions. RuO<sub>2</sub>-CC was prepared by using commercial RuO<sub>2</sub> powder in the same procedure.



**Fig. S1.** SEM image of MoS<sub>2</sub>-CC. The inset image shows the exterior nanosheets grown on carbon cloth.



**Fig. S2.** XRD pattern of MoS<sub>2</sub>-CC. Characteristic diffraction peaks of MoS<sub>2</sub> (JCPDS #37-1492) and graphite (JCPDS #41-1487) are clearly observed.



**Fig. S3.** (a) LSV curves of  $Ni_3S_2/MoS_2$ -CC before and after stability test. The inset displays the corresponding Tafel plots of  $Ni_3S_2/MoS_2$ -CC before and after stability test. (b) HRTEM image of  $Ni_3S_2/MoS_2$ -CC. (c) and (d) display the EDX spectra of the  $Ni_3S_2/MoS_2$ -CC before and after stability test, respectively. (e) High-resolution XPS spectrum of O 1s in the  $Ni_3S_2/MoS_2$ -CC.



Fig. S4. XRD patterns of Ni<sub>3</sub>S<sub>2</sub>/MoS<sub>2</sub>-CC catalyst before and after long-term HER electrolysis.



Fig. S5. LSV curves of the  $Ni_3S_2/MoS_2$ -CC catalyst and  $RuO_2$ -CC. The inset displays the Tafel plots (mV dec<sup>-1</sup>) of  $Ni_3S_2/MoS_2$ -CC and  $RuO_2$ -CC.



**Fig. S6.** (a) Diverse LSV curves of NiFe(OH)<sub>x</sub>@Ni<sub>3</sub>S<sub>2</sub>/MoS<sub>2</sub>-CC samples with different amounts of Ni at different deposition times in 1.0 M KOH. The amount of Fe involved in the reaction is fixed to be immersed in the pre-heated FeCl<sub>3</sub>/NaNO<sub>3</sub> solution for 10 seconds. (b) Overpotentials of samples owned with different amounts of Ni.



Deposition time

Fig. S7. SEM graphics of  $Ni@Ni_3S_2/MoS_2$ -CC samples with different deposition time of surface

nickel.



**Reaction Temperature** 

**Fig. S8.** (a, b) The LSV curves and corresponding Tafel plots of NiFe(OH)<sub>x</sub>@Ni<sub>3</sub>S<sub>2</sub>/MoS<sub>2</sub>-CC samples prepared at different temperatures (for the procedure of 2nd hydrothermal treatment) for OER. (c) The corresponding SEM graphics of Ni<sub>3</sub>S<sub>2</sub>/MoS<sub>2</sub>-CC samples prepared at different temperatures (for the procedure of 2nd hydrothermal treatment).

The morphology of the nanosheets on the samples' surface is not changed significantly. The thin and dense NSs were grown in the vertical direction of CC substrate with a porous structure. From 120 °C to 160 °C, with increasing synthetic temperature, the overpotential reduced (100 mA cm<sup>-2</sup>), the Tafel slope values decreased, and the overall intrinsic catalytic activity was improved. Sample prepared at 180 °C owns the lowest Tafel slope, but the overpotential is somewhat degraded when driving the high current density. Therefore, exorbitant reaction temperature is unnecessary to the promotion of the performance.



**Fig. S9.** Cyclic voltammetry curves of NiFe(OH)<sub>x</sub>@Ni<sub>3</sub>S<sub>2</sub>/MoS<sub>2</sub>-CC samples prepared at different reaction temperatures (for the procedure of 2nd hydrothermal treatment) of (a) 120 °C, (b) 140 °C, (c) 160 °C, and (d) 180 °C in 1 M KOH at various scanning rates (from 20 to 120 mV s<sup>-1</sup>), within a potential range from 0.108 to 0.208 V vs. RHE. (e) Comparison of the double-layer capacitance ( $C_{dl}$ ).

The CV measurements were executed to detect the electrochemical double layer capacitance ( $C_{dl}$ ) of several samples at non-faraday cover potentials as the means of estimating the corresponding effective electrode surface areas (denoted as ECSA). As a result, the sample obtained at 160 °C is the best choice.



**Reaction Time** 

**Fig. S10.** (a, b) The LSV curves and corresponding Tafel plots of NiFe(OH)<sub>x</sub>@Ni<sub>3</sub>S<sub>2</sub>/MoS<sub>2</sub>-CC samples prepared with different reaction time (for the procedure of in-situ growth of metal hydroxides) for OER. (c) The corresponding SEM graphics of NiFe(OH)<sub>x</sub>@Ni<sub>3</sub>S<sub>2</sub>/MoS<sub>2</sub>-CC samples prepared with different reaction time (for the procedure of in-situ growth of metal hydroxides).

In-situ growth of metal hydroxides with different reaction time has a greater impact on performance than 2nd hydrothermal treatment. With the reaction time passing, the hydroxides covered more regions. Samples presented undulating values on Tafel slope. Long-term growth of hydroxides caused the decline of slope value and increase of overpotential.



**Fig. S11.** Cyclic voltammograms of NiFe(OH)<sub>x</sub>@Ni<sub>3</sub>S<sub>2</sub>/MoS<sub>2</sub>-CC samples prepared at different reaction time (for the procedure of in-situ growth of metal hydroxides) of (a) 5 s, (b) 10 s, (c) 15 s, (d) 20 s, and (e) 25 s in 1 M KOH at various scanning rates (from 20 to 120 mV s<sup>-1</sup>), within a potential range from 0.108 to 0.208 V vs. RHE. (f) Comparison of the double-layer capacitance ( $C_{dl}$ ).

The  $C_{dl}$  values of the samples were measured and the slopes of the fitting lines were used for the determination of the  $C_{dl}$  that was proportional to the ECSA. Relatively long reaction time was needed to form uniform and fine nanostructure. Moreover, the slope of sample (25 s) is the lowest, revealing the ECSA decrease with overgrowth of metal hydroxides.



**Fig. S12.** The standard loading mass of NiFe(OH)<sub>x</sub>@Ni<sub>3</sub>S<sub>2</sub>/MoS<sub>2</sub> catalysts on CC is obtained by averaging the weight differences ( $\Delta$ m) of the three samples. More precisely, the calculation of TOF values is based on the total loading mass of metal species on CC substrates.



**Fig. S13.** TOF values of NiFe(OH)<sub>x</sub>@Ni<sub>3</sub>S<sub>2</sub>/MoS<sub>2</sub>-CC samples under different reaction conditions with (a) deposition time of Ni, (b) 2nd hydrothermal temperature, and (c) time of in-situ growth of metal hydroxides.



**Fig. S14.** TEM graphics of exfoliated NiFe(OH)<sub>x</sub>@Ni<sub>3</sub>S<sub>2</sub>/MoS<sub>2</sub> in different resolutions.

Particularly, further amplified TEM image (d) shows a typical boundary area of TMSs and amorphous NiFe film. The marked interplanar spacings of 0.18, 0.20, and 0.63 nm can be clearly captured, which are identical with those of  $Ni_3S_2$  (113), (202), and  $MoS_2$ , respectively. The area to the left of the white dotted line is the amorphous NiFe film.



**Fig. S15.** TEM graphics of exfoliated NiFe(OH)<sub>x</sub>@Ni<sub>3</sub>S<sub>2</sub>/MoS<sub>2</sub> with different regions (a-d) display the crystalline and amorphous phase in hierarchical nanostructure.



Fig. S16. XRD patterns of (a) MoS<sub>2</sub>-CC, (b) Ni<sub>3</sub>S<sub>2</sub>/MoS<sub>2</sub>-CC, and (c) NiFe(OH)<sub>x</sub>@Ni<sub>3</sub>S<sub>2</sub>/MoS<sub>2</sub>-CC.



**Fig. S17.** XRD patterns of NiFe(OH)<sub>x</sub>@Ni<sub>3</sub>S<sub>2</sub>/MoS<sub>2</sub>-CC catalyst before and after long-term OER electrolysis.



Fig. S18. SEM images of two electrodes after overall water electrolysis durability test.

| Sample                                               | Mass activity<br>@ $\eta$ = 0.1 V (A g <sup>-1</sup> ) | Mass activity $@\eta = 0.2 \text{ V} (\text{A g}^{-1})$ | Mass activity<br>@η = 0.3 V (A g <sup>-1</sup> ) |
|------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------|
| Ni <sub>3</sub> S <sub>2</sub> /MoS <sub>2</sub> -CC | 9.03                                                   | 37.68                                                   | 72.68                                            |
| MoS <sub>2</sub> -CC                                 | 0.12                                                   | 1.67                                                    | 16.04                                            |
| Pt/C                                                 | 17.53                                                  | 56.86                                                   | 106.71                                           |
| bare CC                                              | NA <sup>a</sup>                                        | NA <sup>a</sup>                                         | NA <sup>a</sup>                                  |

Table S1. Mass-normalized HER performances of Ni<sub>3</sub>S<sub>2</sub>/MoS<sub>2</sub>-CC and its comparatives.

<sup>a</sup> NA stands for no catalytic material on the bare carbon cloth (CC), so there is no corresponding mass-normalized activity for bare CC sample.

**Table S2**. Comparison of the HER performance for the catalyst in this work with otherreported electrocatalysts in 1 M alkaline electrolytes (KOH or NaOH).

| Catalyst                                             | Support                        | Current<br>density<br><i>j</i> (mA<br>cm <sup>-2</sup> ) | Voltage<br>at <i>the</i><br><i>Corresponding</i><br>j (mV) | Electrolyte solution | Reference                                                         |
|------------------------------------------------------|--------------------------------|----------------------------------------------------------|------------------------------------------------------------|----------------------|-------------------------------------------------------------------|
| Ni <sub>3</sub> S <sub>2</sub> /MoS <sub>2</sub> -CC | Carbon<br>cloth                | 10<br>100<br>400                                         | 65<br>174<br>342                                           | 1 M KOH              | This work                                                         |
| NiCo <sub>2</sub> O <sub>4</sub> /NiFe<br>LDH        | Ni foam                        | 10<br>100                                                | 192<br>440                                                 | 1 M KOH              | ACS Appl. Mater.<br>Interfaces. <b>2017</b> , <i>9</i> ,<br>1488. |
| CoSe/NiFe LDH                                        | Exfoliated<br>graphene<br>foil | 10                                                       | 260                                                        | 1 M KOH              | Energy Environ. Sci.<br><b>2017</b> , <i>9</i> , 478.             |
| NiFe/NiCo <sub>2</sub> O <sub>4</sub>                | Ni foam                        | 10<br>100                                                | 105<br>202                                                 | 1 M NaOH             | Adv. Funct. Mater.<br><b>2017</b> , <i>26</i> , 3515.             |
| Cu <sub>0.3</sub> Co <sub>2.7</sub> P                | Glassy<br>carbon               | 10<br>100                                                | 220<br>445                                                 | 1 M KOH              | Adv. Energy Mater.<br><b>2017</b> , 7, 1601555.                   |
| Ni/Mo <sub>2</sub> C/porous<br>C                     | Glassy<br>carbon               | 10                                                       | 179                                                        | 1 М КОН              | Chem. Sci. <b>2017</b> , <i>8,</i><br>968.                        |
| Janus Co/CoP                                         | N doped C<br>membranes         | 10                                                       | 135                                                        | 1 М КОН              | ACS Nano <b>2017</b> , <i>11</i> , 4358.                          |
| Janus Co/CoP                                         | Ni foam                        | 10                                                       | 193                                                        | 1 М КОН              | Adv. Energy Mater.<br><b>2017</b> , 7, 1602355.                   |
| Ni <sub>12</sub> P <sub>5</sub>                      | Ni foam                        | 10<br>100                                                | 170<br>290                                                 | 1 М КОН              | ACS Catal., <b>2017</b> , 7,<br>103.                              |
| Cu/CoS <sub>x</sub>                                  | Cu foam                        | 10<br>100                                                | 134<br>267                                                 | 1 М КОН              | Adv. Mater. <b>2017</b> ,<br><i>29</i> , 1606200.                 |
| Co <sub>3</sub> O <sub>4</sub><br>microtube          | Ni foam                        | 10<br>100                                                | 170<br>285                                                 | 1 М КОН              | Angew. Chem., Int.<br>Ed. <b>2017</b> , <i>56,</i> 1324.          |
| VOOH hollow<br>nanosphere                            | Ni plate                       | 10<br>100                                                | 164<br>270                                                 | 1 M NaOH             | Angew. Chem., Int.<br>Ed. <b>2017</b> , <i>56</i> , 573.          |
| CoS/carbon<br>nanotube                               | Carbon<br>paper                | 10                                                       | 190                                                        | 1 M KOH              | ACS Nano <b>2017</b> , <i>10</i> , 2342.                          |
| NiCo <sub>2</sub> S <sub>4</sub><br>nanowire         | Ni foam                        | 10<br>100                                                | 210<br>350                                                 | 1 M KOH              | Adv. Funct. Mater.<br><b>2017</b> , <i>26</i> , 4661.             |
| MoC/Mo <sub>2</sub> C                                | Glassy<br>carbon               | 10                                                       | 120                                                        | 1 М КОН              | Chem. Sci. <b>2017</b> , <i>7</i> ,<br>3399                       |
| CoO <sub>x</sub> /N doped C                          | Glassy<br>carbon               | 10                                                       | 232                                                        | 1 М КОН              | J. Am. Chem. Soc.<br><b>2017</b> , <i>137</i> , 2688.             |
| Exfoliated NiFe<br>LDH/defective<br>graphene         | Glassy<br>carbon               | 10                                                       | 210                                                        | 1 M KOH              | Adv. Mater. <b>2017</b> ,<br><i>29</i> , 1700017.                 |

| Sample                                                | Mass activity     | Mass activity<br>$@n = 0.4 V (A g^{-1})$ | Mass activity<br>$\square n = 0.5 V (0.0^{-1})$ |  |
|-------------------------------------------------------|-------------------|------------------------------------------|-------------------------------------------------|--|
|                                                       | @17 - 0.3 V (Ag ) | (Ag)                                     | (mg )                                           |  |
| NIFe(On)x                                             | 15.47             | 233.29                                   | 366.05                                          |  |
| @Ni <sub>3</sub> S <sub>2</sub> /MoS <sub>2</sub> -CC |                   |                                          |                                                 |  |
| Ni <sub>3</sub> S <sub>2</sub> /MoS <sub>2</sub> -CC  | 0.45              | 3.43                                     | 13.55                                           |  |
| MoS <sub>2</sub> -CC                                  | 0.52              | 1.02                                     | 3.19                                            |  |
| RuO <sub>2</sub> -CC                                  | 0.86              | 6.35                                     | 19.40                                           |  |
| bare CC                                               | NA <sup>a</sup>   | NA <sup>a</sup>                          | NA <sup>a</sup>                                 |  |

**Table S3.** Mass-normalized OER performances of NiFe(OH)<sub>x</sub>@Ni<sub>3</sub>S<sub>2</sub>/MoS<sub>2</sub>-CC and its comparatives.

<sup>a</sup> NA stands for no catalytic material on the bare carbon cloth (CC), so there is no corresponding mass-normalized activity for bare CC sample.

Table S4. Comparison of OER performance in 1 M KOH solution for  $(Ni_{0.33}Co_{0.67})S_2 NWs/CC$ 

| with some representation | ve non-precious metal | catalysts reported. |
|--------------------------|-----------------------|---------------------|
|--------------------------|-----------------------|---------------------|

| Catalyst                                                                        | Support                            | Current<br>density <i>j</i><br>(mA<br>cm <sup>-2</sup> ) | Voltage<br>at <i>the</i><br><i>Corresponding j</i><br>(mV) | Electrolyte<br>solution<br>(1 M) | Reference                                                  |
|---------------------------------------------------------------------------------|------------------------------------|----------------------------------------------------------|------------------------------------------------------------|----------------------------------|------------------------------------------------------------|
| NiFe(OH) <sub>x</sub> @<br>Ni <sub>3</sub> S <sub>2</sub> /MoS <sub>2</sub> -CC | Carbon<br>cloth                    | 10<br>100<br>400                                         | 1484<br>1539<br>1560                                       | кон                              | This work                                                  |
| Ni-Fe-OH@Ni <sub>3</sub> S<br>2/NF                                              | Ni foam                            | 10<br>100                                                | 1478<br>1613                                               | КОН                              | Adv. Mater. <b>2017</b> , <i>29</i> ,<br>1700404.          |
| Ni₃Fe(OH) <sub>9</sub> /NF                                                      | Ni foam                            | 100                                                      | 1683                                                       | КОН                              | Nat. Commun. <b>2015</b> , <i>6</i> ,<br>6616.             |
| NiFe LDH/NF                                                                     | Ni foam                            | 10                                                       | 1553                                                       | NaOH                             | Science <b>2014</b> , <i>345</i> , 1593.                   |
| Ni <sub>x</sub> Fe <sub>1-x</sub> Se <sub>2</sub> -DO                           | Ni foam                            | 10                                                       | 1508                                                       | КОН                              | Nat. Commun. <b>2016</b> , 7,<br>12324.                    |
| NiFeO <sub>x</sub> /CFP                                                         | Carbon<br>fiber                    | 10                                                       | 1593                                                       | КОН                              | Nat. Commun. <b>2015</b> , <i>6</i> ,<br>7261.             |
| FeNi-rGO LDH                                                                    | rGO                                | 10                                                       | 1519                                                       | КОН                              | Angew. Chem., Int. Ed.<br><b>2014</b> , <i>126</i> , 7714. |
| NiFe-LDH/CNT                                                                    | Carbon<br>nanotube                 | 5                                                        | 1563                                                       | КОН                              | J. Am. Chem. Soc. <b>2013</b> ,<br><i>135</i> , 8452.      |
| Ni50Fe50-DAT                                                                    | Ni plate                           | 100                                                      | 1613                                                       | NaOH                             | ACS Catal. <b>2016</b> , <i>6</i> , 1159.                  |
| Ni <sub>2/3</sub> Fe <sub>1/3</sub> -rGO                                        | rGO                                | 10                                                       | 1523                                                       | КОН                              | ACS Nano <b>2015</b> , <i>9</i> , 1977.                    |
| Exfoliated NiFe<br>LDH/defective<br>graphene                                    | Glassy<br>carbon                   | 10<br>100                                                | 1533<br>1638                                               | кон                              | Adv. Mater. <b>2017</b> , <i>29</i> , 1700017.             |
| NiFe LDH                                                                        | Ni plate                           | 10<br>100                                                | 1553<br>1763                                               | NaOH                             | J. Mater. Chem. A <b>2016</b> ,<br><i>4</i> , 167.         |
| Fe doped CoP                                                                    | Ti foil                            | 10<br>100                                                | 1543<br>1623                                               | КОН                              | Adv. Mater. <b>2017</b> , <i>29</i> ,<br>1602441.          |
| Fe <sub>x</sub> N                                                               | Graphen<br>e/Ni<br>foam            | 10<br>100                                                | 1555<br>1603                                               | кон                              | ACS Catal. <b>2017</b> , 7, 2025.                          |
| Co-N-P doped<br>carbon                                                          | Exfoliate<br>d<br>graphene<br>foil | 10<br>30                                                 | 1600<br>1670                                               | КОН                              | Adv. Mater. <b>2017</b> , 29,<br>1604480.                  |
| FeOOH/Co/FeO<br>OH                                                              | Ni foam                            | 100                                                      | 1623                                                       | КОН                              | Angew. Chem., Int. Ed.<br><b>2017</b> , <i>55</i> , 3694.  |
| CoNi(OH) <sub>x</sub>                                                           | Cu foil                            | 10<br>100                                                | 1593<br>1653                                               | КОН                              | Adv. Energy Mater. <b>2017</b> ,<br><i>6</i> , 1501661.    |

**Table S5.** Comparison of bifunctional electrocatalysts for overall water splitting in 1 M KOH

 solution.

| Catalyst                              | Support          | Current<br>density <i>j</i><br>(mA<br>cm <sup>-2</sup> ) | Voltage<br>at <i>the</i><br><i>Corresponding</i><br>j (mV) | Electrolyte<br>solution<br>(1 M) | Reference                                              |
|---------------------------------------|------------------|----------------------------------------------------------|------------------------------------------------------------|----------------------------------|--------------------------------------------------------|
| CMN//CMNF                             | carbon<br>cloth  | 10                                                       | 1.55                                                       | КОН                              | This work                                              |
| Co <sub>x</sub> Mo <sub>y</sub> @NC   | glassy<br>carbon | 10                                                       | 1.74                                                       | КОН                              | J. Mater. Chem. A<br><b>2017</b> , <i>5</i> , 16929    |
| Ni1.5Fe0.5P/CF                        | carbon<br>fiber  | 10<br>20                                                 | 1.589<br>1.635                                             | КОН                              | Nano Energy <b>2017</b> , <i>34</i> ,<br>472.          |
| Ni <sub>2</sub> P                     | Ni foam          | 10                                                       | 1.63                                                       | КОН                              | Energy Environ. Sci.<br><b>2015</b> , <i>8</i> , 2347. |
| Co-doped NiSe <sub>2</sub>            | Ti foam          | 10                                                       | 1.62                                                       | КОН                              | Nanoscale <b>2016</b> , <i>8</i> ,<br>3911.            |
| (Ni, Co)Se <sub>2</sub> -GA           | Ni foam          | 10                                                       | 1.60                                                       | кон                              | ACS Catal. <b>2017</b> , 7,<br>6394.                   |
| Ni <sub>2</sub> Se/NF                 | Ni foam          | 10                                                       | 1.63                                                       | КОН                              | Angew. Chem., Int. Ed. <b>2015</b> , <i>54</i> , 9351. |
| Co <sub>0.85</sub> Se/NiFe-L<br>DHs   | graphene<br>foil | 20                                                       | 1.71                                                       | КОН                              | Energy Environ. Sci.<br><b>2016</b> , <i>9</i> , 478.  |
| NiFe/NiCo <sub>2</sub> O <sub>4</sub> | Ni foam          | 10                                                       | 1.67                                                       | КОН                              | Adv. Funct. Mater.<br><b>2016</b> , <i>26</i> , 3515.  |
| $N-Ni_3S_2$                           | Ni foam          | 10                                                       | 1.48                                                       | КОН                              | Adv. Mater. <b>2017</b> , <i>29</i> ,<br>1701584.      |

**Movie S1.** This movie displays NMC//NFNMC AWSD operated at a large current density of 50 mA cm<sup>-2</sup> to drive overall water splitting. Generated hydrogen and oxygen gases are efficiently and rapidly released from the electrodes.

### References

- Z. Q. Wang, S. Zeng, W. H. Liu, X. W. Wang, Q. W. Li, Z. G. Zhao and F. X. Geng, ACS Appl. Mater. Inter., 2017, 9, 1488-1495.
- Y. Hou, M. R. Lohe, J. Zhang, S. H. Liu, X. D. Zhuang and X. L. Feng, *Energy Environ. Sci.*, 2016, 9, 478-483.
- 3. C. L. Xiao, Y. B. Li, X. Y. Lu and C. Zhao, Adv. Funct. Mater, 2016, 26, 3515-3523.
- J. H. Song, C. Z. Zhu, B. Z. Xu, S. F. Fu, M. H. Engelhard, R. F. Ye, D. Du, S. P. Beckman and Y. H. Lin, *Adv. Energy Mater.*, 2017, 7, 1601555.
- 5. Z. Y. Yu, Y. Duan, M. R. Gao, C. C. Lang, Y. R. Zheng and S. H. Yu, *Chem. Sci.*, 2017, **8**, 968-973.
- H. Wang, S. X. Min, Q. Wang, D. B. Li, G. Casillas, C. Ma, Y. Y. Li, Z. X. Liu, L. J. Li, J. Y. Yuan, M. Antonietti and T. Wu, ACS Nano, 2017, **11**, 4358-4364.
- Z. H. Xue, H. Su, Q. Y. Yu, B. Zhang, H. H. Wang, X. H. Li and J. S. Chen, *Adv. Energy Mater.*, 2017, 7, 1602355.
- P. W. Menezes, A. Indra, C. Das, C. Walter, C. Gobel, V. Gutkin, D. Schmeisser and M. Driess, ACS Catal., 2017, 7, 103-109.
- Y. P. Liu, Q. J. Li, R. Si, G. D. Li, W. Li, D. P. Liu, D. J. Wang, L. Sun, Y. Zhang and X. X. Zou, *Adv Mater*, 2017, 29, 1606200.
- 10. Y. P. Zhu, T. Y. Ma, M. Jaroniec and S. Z. Qiao, *Angew. Chem. Int. Edit.*, 2017, **56**, 1324-1328.
- 11. H. H. Shi, H. F. Liang, F. W. Ming and Z. C. Wang, *Angew. Chem. Int. Edit.*, 2017, **56**, 573-577.
- 12. J. Wang, H. X. Zhong, Z. L. Wang, F. L. Meng and X. B. Zhang, *ACS Nano*, 2016, **10**, 2342-2348.
- 13. A. Sivanantham, P. Ganesan and S. Shanmugam, *Adv. Funct. Mater.*, 2016, **26**, 4661-4672.
- H. L. Lin, Z. P. Shi, S. N. He, X. Yu, S. N. Wang, Q. S. Gao and Y. Tang, *Chem. Sci.*, 2016, 7, 3399-3405.
- H. Y. Jin, J. Wang, D. F. Su, Z. Z. Wei, Z. F. Pang and Y. Wang, J. Am. Chem. Soc., 2015, 137, 2688-2694.
- Y. Jia, L. Z. Zhang, G. P. Gao, H. Chen, B. Wang, J. Z. Zhou, M. T. Soo, M. Hong, X. C. Yan, G. R. Qian, J. Zou, A. J. Du and X. D. Yao, *Adv. Mater.*, 2017, **29**, 1700017.

- 17. X. Zou, Y. P. Liu, G. D. Li, Y. Y. Wu, D. P. Liu, W. Li, H. W. Li, D. J. Wang, Y. Zhang and X. X. Zou, *Adv. Mater.*, 2017, **29**, 1700404.
- 18. X. Y. Lu and C. A. Zhao, *Nat. Commun.*, 2015, **6**, 6616.
- 19. J. S. Luo, J. H. Im, M. T. Mayer, M. Schreier, M. K. Nazeeruddin, N. G. Park, S. D. Tilley, H. J. Fan and M. Gratzel, *Science*, 2014, **345**, 1593-1596.
- 20. X. Xu, F. Song and X. L. Hu, Nat. Commun., 2016, 7, 12324.
- 21. H. T. Wang, H. W. Lee, Y. Deng, Z. Y. Lu, P. C. Hsu, Y. Y. Liu, D. C. Lin and Y. Cui, *Nat. Commun.*, 2015, **6**, 7261.
- 22. M. Gong, Y. G. Li, H. L. Wang, Y. Y. Liang, J. Z. Wu, J. G. Zhou, J. Wang, T. Regier, F. Wei and
  H. J. Dai, *J. Am. Chem. Soc.*, 2013, **135**, 8452-8455.
- 23. T. T. H. Hoang and A. A. Gewirth, ACS Catal., 2016, 6, 1159-1164.
- W. Ma, R. Z. Ma, C. X. Wang, J. B. Liang, X. H. Liu, K. C. Zhou and T. Sasaki, ACS Nano 2015, 9, 1977-1984.
- 25. X. G. Liu, X. Wang, X. T. Yuan, W. J. Dong and F. Q. Huang, *J. Mater. Chem. A* **2016**, 4, 167-172.
- C. Tang, R. Zhang, W. B. Lu, L. B. He, X. Jiang, A. M. Asiri and X. P. Sun, *Adv. Mater.* 2017, 29, 1602441.
- Y. Hou, M. Qiu, T. Zhang, J. Ma, S. H. Liu, X. D. Zhuang, C. Yuan and X. L. Feng, *Adv. Mater.* 2017, 29, 1604480.
- 28. J. X. Feng, H. Xu, Y. T. Dong, S. H. Ye, Y. X. Tong and G. R. Li, *Angew. Chem., Int. Edit.* **2016**, 55, 3694-3698.
- 29. S. W. Li, Y. C. Wang, S. J. Peng, L. J. Zhang, A. M. Al-Enizi, H. Zhang, X. H. Sun and G. F. Zheng, *Adv. Energy Mater.* **2016**, 6, 1501661.
- 30. J. Jiang, Q. X. Liu, C. M. Zeng and L. H. Ai, J. Mater. Chem. A 2017, 5, 16929-16935.
- H. W. Huang, C. Yu, C. T. Zhao, X. T. Han, J. Yang, Z. B. Liu, S. F. Li, M. D. Zhang and J. S. Qiu, Nano Energy, 2017, 34, 472-480.
- 32. L. A. Stern, L. G. Feng, F. Song and X. L. Hu, Energy Environ. Sci., 2015, 8, 2347-2351.
- 33. T. T. Liu, A. M. Asiri and X. P. Sun, *Nanoscale*, 2016, **8**, 3911-3915.
- 34. X. Xu, H. F. Liang, F. W. Ming, Z. B. Qi, Y. Q. Xie and Z. C. Wang, *ACS Catal.*, 2017, **7**, 6394-6399.
- 35. C. Tang, N. Y. Cheng, Z. H. Pu, W. Xing and X. P. Sun, *Angew. Chem., Int. Edit.* **2015**, 54, 9351-9355.

- 36. Y. Hou, M. R. Lohe, J. Zhang, S. H. Liu, X. D. Zhuang and X. L. Feng, *Energy Environ Sci*, 2016, **9**, 478-483.
- 37. C. L. Xiao, Y. B. Li, X. Y. Lu and C. Zhao, Adv. Funct. Mater. 2016, 26, 3515-3523.
- 38. P. Z. Chen, T. P. Zhou, M. X. Zhang, Y. Tong, C. G. Zhong, N. Zhang, L. D. Zhang, C. Z. Wu and Y. Xie, *Adv. Mater.*, 2017, **29**, 1701584.