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1. Methods of band structure and thermoelectric (TE) coefficient calculations 

The electronic structure is calculated through VASP 1,2, which uses plane wave basis sets 

and PAW pseudopotentials. The Perdew-Burke-Ernzerhof (PBE) version of generalized 

gradient approximation (GGA) is used for the exchange-correlation potential 3. The 

DFT-D2 method of Grimme is used to take into account van der Waals (vdW) 

interactions between different layers 4. The convergence criteria for DFT self-consistent 

loops is set as 10-4 eV. Atomic positions are fully relaxed until forces on all atoms are 

less than 0.05 eV/Å. In band structure and DOS calculations, a finer mesh of 11×11×31 

is used. 

 

With band structures obtained, the electrical conductivity  , Seebeck coefficients S  

and the electronic thermal conductivity eκ   can be calculated from the Boltzmann 

transport equation (BTE) under the relaxation time approximation that is implemented 

in our modified version based on the BoltzTraP code 5. 
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where nkε   is the energy eigenvalue of nth band at k point, )f(εnk   the Fermi-Dirac 

distribution function, τ   the momentum-dependent relaxation time, nkv   the group 

velocity, T  the temperature and μ  the chemical potential, respectively. 

 



The momentum-dependent relaxation time is calculated based on deformation potential 

approximation (DPA) proposed by Bardeen and Shockley 6. The longitudinal acoustic 

phonon mode is considered in electron-phonon (e-ph) couplings along the direction of 

electricity flow. According to Shuai’s work 7, τ  can be expressed as follow, 
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where E  is the deformation potential constant for longitudinal acoustic phonons, C  

the elastic constant, and θ  the angle between k and k′, respectively. 

 

In one-dimensional (1D) case, the relaxation time can be expressed as follow 8, 
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Here, kv  is the group velocity, obtained through the derivative of energy to the wave 

vector, 
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Define *2 2mk)(ε = and that *m  is the effective mass. The electronic mobility in 1D 

system can be obtained 9, 
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The elastic constant and the deformation potential constant of PCN are obtained from 

Figure S1, according to 2
0total

2 ΔLLEC =  with 0δL/LΔL = , and L /ΔΔEE VBCB= . 

totalE and VBCBΔE  are the total energy and the energy difference of conduction (valence) 



band minimum (maximum) respectively. The energy level of the deep core state is 

assume to be constant if the lattice deformation is small 10,11. The lattice constant along 

z direction L  is change, while 
0L  is the lattice constant at the equilibrium structure. 

C  and E  for the conduction band are 20.23 eV/Å and -3.95 eV, respectively. The 

doping effect is considered under rigid band approximation. Figure S2 shows the carrier 

concentration dependence of fermi energy. The two lines of fermi energy are nearly 

linear and display a similarly weak doping concentration with other materials obtaining 

1D charge transport properties. The figure S3 shows the violation of the Wiedemann-

Franz law. 

 

2. Transfer integrals and the reorganization energy 

We use the electronic band model to describe the charge transport in polymeric carbon 

nitride (PCN). It is commonly accepted that the band model can be used if electron 

transfer integrals   are larger than or comparable to the reorganization energy 12. For 

the validation, electronic transfer integrals    and reorganization energy λ   are 

calculated. 

 

 

2.1 Transfer integrals 

Transfer integrals   of PCN are used to describe the hopping energy that is obtained by 

fitting conduction bands according to the tight-binding model 13. The model for 1D 

bands is expressed as follow, 
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We calculated the band structure with parameters provided in Part 1. Figure S2 shows 

results of the fitting, to be   = 0.224, 0.216 eV for the two conduction bands. The two 

valence bands do not behave like a cosine function and are much flatter than the 

conduction band. Therefore, it is clear that   for valence bands are much smaller. 

 

2.2 Reorganization energy 

The reorganization energy is usually expressed as the sum of inner and outer 

contributions 14. We use diabatic potential surfaces of melem to evaluate the inner part 

of reorganization energy. This value is assumed an upper limit of reorganization energy 

for PCN, because polymer chains and stacking motif impose more restrictions on 

geometrical optimization. As in most instances, the outer part is expected to have the 

same order of magnitude as the inner part 14, the inner and outer parts are regarded as 

equal in our calculations. 

 

We used Gaussian 09 to calculate the inner part of the reorganization energy 15. The most 

stable structure of the neutral and cation state was determined by the structural 

optimization using B3LYP/6-31G(d, p). Then the total energies of the neutral state in the 

neutral structure (E), the cation state in the cation structure ( +E ), the cation state in the 

neutral structure ( *E+ ), and the neutral state in the cation structure ( *E ) were calculated 

using B3LYP/6-31++G(d, p). The reorganization energy was obtained from 

E)(E)E(Eλ **
inner −+−= ++  

The inner part of reorganization we obtained is 0.148 eV for the melem monomer. The 



total reorganization energy of PCN is 0.296 eV that is close to transfer integrals of its 

conduction bands. 

 

3. MD simulation details 

The lattice thermal conductivity of polymeric carbon nitrides (PCN) is calculated by 

equilibrium molecular dynamics (EMD) based on the Green-Kubo formula 16, 
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where κ, kB, V and T are the thermal conductivity, the Boltzmann constant, and the 

volume of simulation cell, respectively. )0()(
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 JJ   is the heat current autocorrelation 

function (HCACF). The angular bracket denotes ensemble average. The heat current is 

given by 
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where iv
→

and i are the velocity vector and energy (kinetic and potential) of particle i, 

respectively. ijr
→

and ijF
→

are the interparticle separation vector and force vector between 

particles i and j, respectively. In MD simulation, the temperature TMD is calculated from 

the kinetic energy of atoms according to the Boltzmann distribution: 
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All the simulations are carried out utilizing the LAMMPS software package 17. The 

repeating units of PCN are first constructed and put in an orthogonal unit cell with 

periodic boundary conditions in all directions. The expression of force field states 8,18:  
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The parameters of bond, angle, VDW are taken from Ref. 18, and listed in Table S1. The 

force-field has successfully predicted accurate thermodynamic properties of interests 

for our system of interest 8. 

 

The velocity Verlet algorithm is employed to integrate equation of motion, and the time 

step is set as 0.1 fs. At the beginning of thermal conductivity simulations, the system 

runs in the NVT ensemble for 500 ps. Then, the simulations run in the NPT ensemble 

for another 500 ps to relax the structure. After relaxation, the simulation is switched to 

run in the NVE ensemble and the HCACF is recorded for 1ns. Finally, the thermal 

conductivity is obtained by the integral of the HCACF (Eq.1). 

 

4. MD results and discussions 

In EMD simulations, the cross-plane thermal conductivity of PCN shows a weak size 

dependence, which is related to the phonon wavelength 19,20. Therefore, we examined 

the dependence of thermal conductivity on system size. It is noted that in Fig. S6 the 

thermal conductivity is converged when the simulation cell is 6×6×10 MD unit cells 

(100.35 Å ×76.11 Å ×7.28 Å) and the temperature is 250K. Therefore, the simulation 

cell size is taken in all the simulations. 

 

Figure S8 shows that the thermal conductivity as a function of temperature. It is noted 

that thermal conductivity of PCN fluctuates in the range of 0.3~0.6W/m-K, which fall 

into the common range of 0.1~1.0 W/m-K for organic molecular crystals 8. The low 

thermal conductivity originates from the weak intermolecular bonding of vdW nature, 



compared with the strong intramolecular valence bonding. Besides, the thermal 

conductivity firstly increases, and then falls with the increasing temperature. The reason 

is that the more phonons are exicited to contribute thermal transport as the temperature 

increases. Meanwhile, the phonon-phonon scattering would significantly increase in 

high temperature. Thus the thermal conductivity would decrease. 

 

To accurately predict the lattice thermal conductivity of A-A stacked PCN along z 

direction, we consider vdW interaction and electrostatic forces to describe the overlap 

of pz orbitals. The Normalized heat current autocorrelation function (HCACF) and 

lattice thermal conductivity along z diretion at 300 K are shown in Fig. S9. In addition, 

we also calculate the thermal conductivity at different temperatures, shown in Fig. S10. 

By contrast, we observed that the thermal conductivity of PCN at 300 K is enhanced 

by 28.57 % when considering the electrostatic force to describe the overlap of pz orbitals. 

Therefore, compared with the weak vdW interactions between interlayers, the overlap 

of pz orbitals in PCN does noticeably enhance the thermal transport. 
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Figure S1. Upper: The total energy of a PCN unit cell as a function of the lattice 

dilatation along the c direction. Lower: The conduction and the valence band edge shifts 

as functions of the lattice dilatation. 

  



 

Figure S2. The carrier concentration dependence of Fermi energy at the room 

temperature.” 

  



 

Figure S3, The 𝜅𝑒 (𝜎𝑇𝐿⁄ )  as a function of doping concentration. 𝐿  is the Lorenz 

number, 𝐿 = 𝜋2𝑘𝐵
2 (3𝑒2)⁄  , where 𝑘𝐵  is the Boltzmann constant and 𝑒  is the 

elementary charge. 

  



 

Figure S4. The conduction band fitting from Γ to Z with the tight-binding model. 

  



 

Figure S5. The structure of polymeric carbon nitrides. (a) The top view, a hexagonal 

simulation unit cell, and its length along the x (y) direction is 16.60 Å (12.69 Å). (b) 

The side views. The interlayer distance is 3.47 Å. The blue atoms are Nitride, the black 

atoms are carbon and the white atoms are hydrogen. 
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Figure S6. The lattice thermal conductivity along the z direction for simulation cell with 

different sizes. The simulation unit cell of 1×1×1 is 16.60 Å ×12.69 Å ×3.46nm. The 

temperature of simluation is 250 K. 

  



 
Figure S7. The heat current autocorrelation function (HCACF) along the z directrion 

(black line). The right (blue line) axe corresponds to the lattice thermal condcutivity 

from the intergral of HCACF. The simulation supercell of 6×6×10 is 100.35 Å×

76.11 Å×7.28 Å. 

 



 

Figure S8. The lattice themal conductivity of polymeric nitrides carbon as a function 

of temperature from the molecular dynamics simulations without considering the 

thermal contribution from electrostatic force to describe the overlap of pz orbitals. 

  



 

Figure S9. (a) Normalized heat current autocorrelation function (HCACF) along the z 

direction when we consider the electrostatic force to describe the overlap of pz orbitals. 

(b) The lattice thermal conductivity along the z direction from the intergral of HCACF. 

The temperature is at 300 K. 

 

  



 

Figure S10. The lattice themal conductivity of polymeric nitrides carbon as a function 

of temperature from the molecular dynamics simulations. We consider thermal 

conductivity contribution of the electrostatic force to describe the overlap of pz orbitals. 



Table S1. The parameters of bond, angle, VDW in potential functions. The δ and ε used 

in Eq. (1) for an interaction of atom I and atom j is δij = δi + δj and εij = √εiεj, respectively. 

Bond Parameters 

bond Kr (kcal/(mol∙Å2)) req (Å) 

CA–NA 227.0 1.1810 

CA–NC 483.0 1.339 

NC–H 434.0 1.010 

N2=H 434.0 1.010 

CA-N2 481.0 1.340 

Angle Parameters 

angle 

Kθ 

(kcal/(mol∙radian2)) 

θeq 

(degrees) 

NA-CA-NA 70.0 120.00 

NA-CA-NC 70.0 123.30 

CA-NA-CA 70.0 112.00 

CA-NC-CA 30.0 125.00 

CA-NC-H 35.0 118.00 

H-N2-H 35.0 120.00 

CA-N2-H 35.0 120.00 

NA-CA-N2 70.0 116.00 

Van der Waals Parameters 



. 

  

 

atom 

type 

ε (kcal/(mol)) σ (Å) 

N 0.1700 1.8240 

C 0.0860 1.9080 

H 0.0157 0.6000 


