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S1 

General Methods 

Silica gel (300-400 mesh) was used for column chromatography. Unless otherwise 

noted, materials obtained from commercial suppliers were used without further 

purification. Tetrahydrofuran (THF) and toluene (Tol.) were redistilled under argon 

and refluxed with Na crumbs. All aqueous solutions were prepared with Milli-Q water 

S2  

Characterization 

Mass spectra (MS) were recorded using a Bruker time of flight mass spectrometer 

coupled with matrix-assisted laser desorption/ionization source (MALDI-TOF). The 

NMR spectra were acquired on a Bruker AV Spectrometer at 298 K in the solvents 

indicated. Chemical shifts are expressed in p.p.m. units relative to TMS (0.0 ppm, 1H). 

The solid-state 13C NMR spectra were acquired on Bruker Avance III with 4 mm 

CP/MAS probe. The functional groups of the products were also characterized by 

Raman spectroscopy (Hitachi X-plora, 532 nm, 0.1 mW) and Fourier transform 

infrared spectroscopy (FT-IR, Thermo-Fisher Nicolet Avatar330). The 

ultraviolet-visible (UV-Vis) absorption spectra in a diffuse reflection mode were 

recorded on Cary-5000 spectrometer. The X-Ray photoelectron spectrometer (XPS) 

was carried out on PHI quantum-2000 [Monochromatic Al Kα X-rays (1486.6 eV) 

operating at 15 kV and 300 W, the base pressure: 5.0×10–8 Pa]. The spectra data were 

analyzed using XPS-Peak software. The argon adsorption/desorption measurements 



were performed using a Micromeritics ASAP2020 gas-sorption system. The X-ray 

diffraction (XRD) data were recorded on a Ultima IV with Cu Kα radiation (λ = 

1.5406 Å) at a scanning speed of 10° min–1. The dynamic light scattering (DLS) 

analysis was performed on Zetasizer Nano ZS90. Morphology details were examined 

using field emission scanning electron microscopy (FE-SEM, HITACHI S-4800) and 

transmission electron microscopy (TEM, Tecnai F30, accelerating voltage: 300 kV). 

The atomic force microscope (AFM) data were collected on multimode 8 using peak 

force mode. 

S3 

Electrochemical tests 

The electrochemical properties of TP-COP/CNT film were evaluated using 2016 

coin-type cells assembled with metal lithium as counter/reference electrodes and a 

solution of 1M LiTFSI-DOL/DME as the electrolyte. The free-standing TP-COP/CNT 

film (the mass ratio of TP-COP and CNT is 2:1) is punched into a circular disk with a 

diameter of 14 mm and directly used as the working electrode. The average mass of 

each electrode (Ø = 14 mm) is ca. 1.0 mg. The electrode is dried at 80  overnight ℃ in 

a vacuum oven before the assembly of cells. All the cells are assembled in a glove 

box with [O2], [H2O] ≤  1 ppm. The galavnosatic charge/discharge tests are 

conducted on LAND cycler (Wuhan Kingnuo Electronic Co., China) with various 

current loading at ambient temperature. The specific capacities are calculated based 

on the weight of the TP-COP/CNT films. In comparison, the control experiment 



regarding the electrochemical properties of CNT is also evaluated under the similar 

conditions (the details are shown in S10). 
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Monomer preparation 

The monomer of TP-COP was synthesized1 by the following route as shown in Figure 

S1. The chemical structure and purity of products can be characterized by the MS and 

NMR spectrometry (see in Figures S2-S6). 

913.2 mg (4 mmol) of triphenylene (TP), 90 mg of Fe (1.6 mmol) powder were 

added into 20 mL of degassed nitrobenzene (Ph-NO2) before injecting 4 mL of liquid 

bromine (Br2). The mixture was stirred under an argon atmosphere at 160 °C for 2 

hours. The reaction was quenched with diethyl ether, the precipitate was obtained and 

washed with diethyl ether to yield 2,3,6,7,10,11-hexabromotriphenylene (HBTP) as 

the white powder (Figure S1). The molecular weight of the HBTP was determined 

through MALDI-TOF-MS (Figure S2), indicating the successful bromination 

progress. 

701.7 mg (1 mmol) of HBTP, 561.6 mg (0.800 mmol) of 

bis(triphenylphosphine)palladium(II) dichloride [PdCl2(PPh3)2], 304.0 mg (1.6 mmol) 

of cuprous iodide (CuI), 419.2 mg (1.6 mmol) of  triphenylphosphine (PPh3) and 1.4 

mL (10 mmol) of trimethylsilylacetylene [(CH3)3SiC≡CH, TMS−C≡CH] were added 

into 80 mL of triethylamine (Et3N) and toluene (Tol.) (v:v = 1:1). The mixture was 

stirred under argon at 80 °C for 12 hours. When the reaction progress was completed, 



the residue was purified by column chromatography to yield 

2,3,6,7,10,11-hexa(trimethylsilylethynyl)riphenylene (HTMSETP) as the yellow 

powder (Figure S1). The structure of the HTMSETP was confirmed by MS and 1H 

NMR (500 MHz, CDCl3): δ = 8.6 p.p.m. (s, 6H), δ = 0.4 p.p.m. (s, 54H), which was 

shown in Figure S4.  

107.0 mg (0.13 mmol) of HTMSETP dissolved in 3 mL tetrahydrofuran (THF) 

was added 1.0 mL tetrabutylammonium fluoride (1 mol L–1 TBAF in THF, 1.0 mmol) 

and stirred at room temperature for 50 min. The solution system was then diluted with 

dichloromethane (DCM), washed with distilled water and dried with anhydrous 

MgSO4. The solvent was removed in a vacuum rotary evaporation to yield raw 

product (Figure S1). To obtain the purified 2,3,6,7,10,11-hexaethynyltriethylamine 

(HETP), the raw product was recrystallization using methanol and stored in dark. The 

molecular weight of HETP was determined through MALDI-TOF-MS (m/z = 371.6) 

(Figure S5). The structure of HETP was also confirmed by the 1H-NMR (600 MHz, 

CDCl3): δ = 8.7 (s, 6H), δ = 3.6 (s, 6H) and 13C-NMR (150 MHz, CDCl3): δ = 81.4, 

82.3, 124.3, 128.4, 128.6 p.p.m., which was shown in Figure S6. 
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Solution-phase synthesis of bulk TP-COP 

The monomer HETP (20 mg) was dissolved in 50 mL of the degassed acetone. Under 

an argon atmosphere, 10 mL of Cu(OAc)2-pyridine complex (10 mmol L−1 of copper 

acetate and 10 mmol L−1 pyridine) aqueous solution was injected into 40 mL degassed 



acetone. The HETP solution (0.4 mg mL−1) was added slowly via syringe pump at a 

speed of 10 mL h–1 into above solution. Then the mixture was stirred at 60 °C for 24 

hours and protected from light. Then the mixture was washed with hot acetone, DMF, 

and 20 % HCl (aq.) in turn and a black powder of bulk TP-COP was obtained. 

S6 

Supplemental discussion of bulk TP-COP characterization 

The UV-Vis absorption spectroscopy (diffuse reflection mode) was used to 

characterize the electronic structure of HETP and the as-prepared TP-COP (Figure 

S8)2. As depicted in Figure S8, the wavelength of maximum absorption (λmax) of 

monomer HETP was located at 284 nm, while the λmax of the as-prepared TP-COP 

was red-shifted by 152 nm, indicating the occurrence of cross-coupling reaction.  
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Exfoliation of bulk TP-COP 

The exfoliation of bulk TP-COP was performed by ultrasonication. Briefly, 10 mg of 

the bulk TP-COP samples was added into 20 mL of dimethyl formamide (DMF). The 

mixture was ultrasonically dispersed for 30 min and kept undisturbed overnight. The 

supernatant of the dispersion was ultrasonicated at a frequency of 20 kHz for 40 min 

(10 min effective pulse ultrasonication) on cell disruption system. The exfoliated 

TP-COP (E-TP-COP) nanosheets were well-dispersed in DMF and formed a colloidal 

solution, which could be proved by Tyndall effect (inset of Figure 2f).  
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TP-COP film synthesized by interfacial polymerization 

To produce TP-COP films (Figure S14), under an argon atmosphere at room 

temperature, a DCM solution containing freshly prepared HETP (30 μg mL−1, 5 mL) 

was added into a glass cylinder with a diameter of 18 mm. The solution was then 

covered with pure water (5 mL) such that a two-phase system formed. An aqueous 

solution (150 μL) of catalytic copper acetate-pyridine complex was injected gently to 

the water. Then the catalytic phase containing 300 μmol L−1 of copper salt were 

formed. The reaction system was kept undisturbed for 24 h in dark, and a pale yellow 

film of the TP-COP was generated at the interface, which labeled as TP-COP (30-300) 

film (inset of Figure S17b). The aqueous layer was then replaced with water, and the 

organic layer was replaced with DCM, in order to remove the unreacted monomer and 

remainder catalysts. Then the both aqueous and organic phases were removed and the 

resultant TP-COP (30-300) film was suspended in ethanol. The suspension was cast 

dropwise on various substrates for further measurement. 

From Figure S15a, there were three main peaks presented in Raman spectrum of 

TP-COP (30-300) film, which corresponded to the D band (1366 cm–1), G band (1595 

cm–1), and butadiyne bond (2176 cm–1), respectively. Additionally, the vibration 

signals of butadiyne groups were enhanced via surface-enhanced Raman spectrum 

(SERS) using gold nanoparticles (inset of Figure S15a)3. The FT-IR spectrum of 

TP-COP (30-300) film was displayed in Figure S15b. The almost disappearance of the 

acetylenic C–H vibration at 3288 cm–1 could be observed, which proved the 



cross-coupling reaction of HETP via interfacial polymerization. Also, in Figure S15c, 

the C 1s envelope of TP-COP (30-300) film can be fitted into four subpeaks of C=C 

at 284.7 eV, C≡C at 285.4 eV, C–O at 287.5 eV and C=O at 288.4 eV, respectively. 

The XPS data confirmed that the TP-COP (30-300) films have both sp2- and 

sp-hybrid carbon, and the area ratio of C=C and C≡C is close to 3:2. 

The wrinkled film observed from TEM image (Figure S16a) suggested the 

flexible nature of TP-COP (30-300) film. HRTEM image clearly disclosed the lattice 

fringes of the as-synthesized multilayer TP-COP (30-300) film with an interlayer 

distance of 3.8 Å (Figures S16b-S16c), which was consistent with that of the TP-COP 

synthesized in solution-phase (Figures 2a and S13c). All characterization methods 

above confirmed the same structures of the TP-COP samples synthesized by solution 

polymerization and interfacial polymerization. 

The TP-COP films by interfacial polymerization were denoted as TP-COP (x-y), 

where x represented x μg mL–1 of HETP in organic phase and y represented y μmol 

L−1 of copper complex in aqueous phase. With adding different amounts of x and y, 

the thickness of as-synthesized TP-COP (x-y) films can be tuned using interfacial 

polymerization. As shown in Figure S17, increasing the added amounts of monomer 

HETP and copper complex to the reaction system, the thicker TP-COP films were 

consequently produced. The thickness of the as-prepared TP-COP (x-y) films could be 

estimated from AFM analysis. The thickness of the films ranged from 0.9 nm to 56.7 

nm according to the increment of x and y (Figure S17a). The optical microscope (OM) 

images and SEM images of the TP-COP (x-y) films with lateral sizes of up to 



micrometers were depicted in Figures S17b-S17c.  
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Solution-phase synthesis of TP-COP/CNT 

For preparing the TP-COP/CNT composite, the synthetic procedure was similar to 

solution-phase synthesis of bulk TP-COP with adding pristine CNT into the reaction 

system. Typically, the HETP (20 mg) was dissolved in 50 mL of acetone. 8 mg of 

CNT was dispersed in a solution containing 40 mL degased acetone and 10 mL of 

Cu(OAc)2-pyridine complex aqueous solution (10 mmol L−1 of copper acetate and 10 

mmol L−1 pyridine). The HETP solution (0.4 mg mL−1) was added slowly via syringe 

pump at a speed of 10 mL h–1 into above dispersion. Then the mixture was stirred at 

60 °C for 24 hours and protected from light. After polymerization and in-situ 

composition, the product was washed with hot acetone, DMF, and 20 % HCl (aq.) in 

turn and a black powder of TP-COP/CNT (about 24 mg) was obtained. Therefore, the 

weight ratio of TP-COP and CNT was about 2:1. 

S10 

Electrochemical properties of CNT substrate 

The electrochemical properties of CNT substrate are also examined. Figure S18a 

shows the cyclic voltammograms (CV) curves of the CNT substrate at a scan rate of 

0.1 mV s–1 within a voltage range of 0.0 ~ 3.0 V. Two tiny peaks at ~ 1.57V/~1.16V 

and a board peak at 0.5 V appear successively in the cathodic scan while these peaks 

are disappeared in the sequent scans, which are ascribed to the continuous formation 



of SEI. Besides, a sharp peak near 0 V in the cathodic scan and an obvious peak at 

~0.19 V in the reverse are observed, which are attributed to the lithiation/delithiation 

of CNT. Figure S18b displays the dQ/dV profiles of the CNT substrate for the 2nd, 3rd, 

and 4th cycle. One discharge peak (~0.012 V) and the corresponding charge peak (~ 

0.07 V) are presented, in accordance with the above CV results. When serving as an 

anode material for lithium ion battery, as shown in Figure S18c, the CNT substrate 

delivers a reversible capacity of 522 mAh g-1 at a current density of 0.1 A g–1. Figure 

S18d displays the rate capability of CNT substrate. The CNT delivers a capacity of 

~522, ~399, ~332, ~272, ~226, ~170 at a current loading of 0.1, 0.2, 0.5, 1, 2, 5 A g–1, 

respectively. When return to the current of 0.1A g–1, it also gains a capacity of 383 

mAh g–1. Long-term cycling performance of CNT substrate is also performed. As 

shown in Figure S18e, the CNT substrate shows a stable cycling performance and 

displays a capacity of 246 mAh g–1 at a large current of 1 A g–1. 
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