Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2018

Supporting Information

Interacting MXene Nanosheets with Cobalt-Tipped Carbon Nanotubes for Efficient Oxygen Reduction Reaction

Jianian Chen,[†] Xiaolei Yuan,[†] Fenglei Lyu, * Qixuan Zhong, Huicheng Hu, Qi Pan and Qiao Zhang*

Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for

Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Road,

Suzhou, 215123, Jiangsu, People's Republic of China.

E-mail: fllv@suda.edu.cn (F. Lyu);

Email: qiaozhang@suda.edu.cn (Q. Zhang)

[†] Jianian Chen and Xiaolei Yuan contributed equally to this work.

Supporting Figures

Figure S1. TEM image of Ti_3C_2 nanosheets.

Figure S2. FTIR spectrum of Ti_3C_2 nanosheets.

The function groups on the surface of Ti_3C_2 were examined by Fourier Transformed Infrared (FTIR) Spectroscopy. Peaks at 3430 cm⁻¹, 1630 cm⁻¹, 1390 cm⁻¹, 1100 cm⁻¹ and 662 cm⁻¹ can be attributed to the stretching vibrations of –OH, C=O, O–H, C–F and Ti–O bonds, which agreed well with the previous report.¹

Figure S3. SEM image of ZIF-67/Ti₃C₂-60.

Figure S4. XRD patterns of Ti_3C_2 , ZIF-67 and ZIF-67/ Ti_3C_2 -60.

Figure S5. TEM and HRTEM images of Co-CNT/Ti $_3C_2$ -60. Scale bars are 100 nm and 10 nm in (a) and (b), respectively.

Figure S6. Tafel plots of Co-CNT/Ti₃C₂-60, Pt/C, ZIF-800 and Ti₃C₂.

Figure S7. LSV curves of Co-CNT/Ti $_3$ C $_2$ -60 with graphite rod (black) and Pt (red) as counter electrode.

Figure S8. LSV curve of Co-CNT/Ti $_3C_2$ -60 after acid treatment.

Figure S9. LSV curve of ZIF-800 and Ti_3C_2 mixture.

Figure S10. LSV curve of ZIF-67/Ti $_3C_2$ with different pyrolysis temperatures.

Figure S11. Onset potential and half-wave potential of Co-CNT/Ti₃C₂-30, Co-CNT/Ti₃C₂-60, Co-CNT/Ti₃C₂-90, Co-CNT/Ti₃C₂-120, Pt/C, ZIF and Ti₃C₂.

Figure S12. Electrochemical impedance spectroscopy (EIS) plots for Co-CNT/Ti₃C₂-30, Co-CNT/Ti₃C₂-60, Co-CNT/Ti₃C₂-90, Co-CNT/Ti₃C₂-120, ZIF-800 and Ti₃C₂.

Figure S13. Nitrogen adsorption desorption isotherms of ZIF-800.

Electrocatalysts	E _{1/2} (V vs RHE)	Electron transfer	Tafel slope	Reference
		number (n)	(mV/dec)	
CeO ₂ –Co–NC	0.80	3.61-3.78	60	2
hollow nanospheres				
Co-N/CNFs	0.82	~3.88	NG	3
CuCoO _x /FeOOH	0.78	3.87-3.92	NG	4
Co-N,B-CSs	0.83	3.98-4.00	64	5
LDH@ZIF-67-800	0.83	~4.00	63	6
NC@Co-NGC	0.82	~4.00	51	7
DSNCs				
Co@Co ₃ O ₄ /NC-1	0.80	~4.00	NG	8
Co@Co ₃ O ₄ @C-	0.81	3.80-3.90	NG	9
СМ				
Co@NG	0.83	>3.80	NG	10
Co-CNT/Ti ₃ C ₂ -60	0.82	>3.90	63	This work

Table S1. Comparisons of ORR performance between recent reported cobalt-basedelectrocatalysts with Co-CNT/Ti $_3C_2$ -60.

Supporting References

Q. Xue, H. Zhang, M. Zhu, Z. Pei, H. Li, Z. Wang, Y. Huang, Y. Huang, Q. Deng, J. Zhou, S. Du, Q. Huang and C. Zhi, *Adv., Mater.*, 2017, 29, 1604847.

2. L. Lv, D. Zha, Y. Ruan, Z. Li, X. Ao, J. Zheng, J. Jiang, H. Chen, W. Chiang, J. Chen, and C. Wang, *ACS Nano* **2018**, *12*, 3042-3051.

3. Q. Cheng, L. Yang, L. Zou, Z. Zou, C. Chen, Z. Hu, and H. Yang, *ACS Catal.* **2017**, *7*, 6864-6871.

M. Kuang, Q. Wang, H. Ge, P. Han, Z. Gu, A. Al-Enizi, and G. Zheng, *ACS Energy Lett.* 2017, 2, 2498-2505.

5. Y. Guo, P. Yuan, J. Zhang, Y. Hu, I. Amiinu, X. Wang, J. Zhou, H. Xia, Z. Song, Q. Xu and S. Mu, *ACS Nano* **2018**, *12*, 1894-1901.

6. Z. Li, M. Shao, L. Zhou, R. Zhang, C. Zhang, M. Wei, D. Evans and Duan, X. *Adv. Mater.* **2016**, *28*, 2337-2344.

S. Liu, Z. Wang, S. Zhou, F. Yu, M. Yu, C. Chiang, W. Zhou, J. Zhao and J. Qiu, *Adv. Mater.* 2017, 29, 1700874.

 A. Aijaz, J. Masa, C. Rösler, W. Xia, P. Weide, A. Botz, R. Fischer, W. Schuhmann and M. Muhler, *Angew. Chem., Int. Ed.* 2016, *55*, 4087-4091.

9. W. Xia, R. Zou, L. An, D. Xia and S. Guo, *Energy Environ. Sci.* 2015, 8, 568-576.

M. Zeng, Y. Liu, F. Zhao, K. Nie, N. Han, X. Wang, W. Huang, X. Song, J. Zhong and
Y. Li, *Adv. Funct. Mater.* 2016, *26*, 4397-4404.