Extending the π -electron conjugation in 2D planar graphitic carbon nitride:

Efficient charge separation for overall water splitting

Sankeerthana Bellamkonda, Ramasamy Shanmugam, and G. Ranga Rao*

Department of Chemistry and DST-IITM Solar Energy Harnessing Centre (DSEHC), Indian

Institute of Technology Madras, Chennai 600036, India

^{*}Corresponding author; Tel.: +91 44 2257 4226; Fax: +91 44 2257 4202; E-mail address: <u>grrao@iitm.ac.in</u> (G. Ranga Rao).

Figure S2 N₂ adsorption-desorption isotherms of as-synthesized carbon nitride polymer samples.

Figure S3 GC signal for photocatalytic activity of BD-CN polymer after 1 h light illumination

The absence of N_2 peak and the evolution of stoichiometric ratio of ~ 2:1 H₂ and O₂ gases evidently assures that the observed O₂ gas exactly comes from photocatalytic water splitting by BD-CN polymer sample rather than leakage air. Moreover, the unnoticeable N₂ gas peak even with increase in irradiation time exhibits the absence of photocorrosion during photocatalytic reaction, indicating super photocatalytic stability of BD-CN.

Even after recyclability tests for photocatalytic water splitting, the BD-CN polymer sample maintained its structural and morphological features as shown in Figures S4-S7 and Table S1. This demonstrates the high stability of BD-CN photocatalytic material.

Figure S4 PXRD profile of Pt photodeposited BD-CN catalyst after photocatalytic tests

Figure S5 FESEM image of Pt deposited BD-CN photocatalyst after photocatalytic measurements

Figure S6 EDAX of Pt deposited BD-CN photocatalyst after stability tests.

Table S1 Elemental composition of Pt deposited BD-CN by FESEM analysis

Element	App	Intensity	Weight %	Weight %	Atomic %
	Conc.	Corrn.		Sigma	
СК	4.05	1.5350	34.41	1.29	38.76
N K	0.89	0.1993	57.96	1.55	55.99
O K	0.14	0.3041	6.08	1.00	5.14
Pt M	0.09	0.7442	1.55	0.41	0.11
Totals			100.00		

C Ka1_2

Figure S7 Elemental mapping of Pt deposited BD-CN photocatalyst after stability studies.

BD-CN

CN

Sample	D _{ads} (DE	$l(O-H_a)$	$l(O-H_b)$	ÐH-O-H	Natural bond orbital charge			
	Å)	(eV)	(Å)	(Å)	θ°	(q)			
						H_a	Ο	H_{b}	Total
Pure H ₂ O			0.96	0.96	103.72	0.472	-0.944	0.472	0
CN	2.20	-0.7867	0.97	0.96	101.96	0.500	-0.975	0.469	-0.006
PD-CN	2.16	-0.7640	0.97	0.97	101.79	0.503	-0.977	0.469	-0.005
BD-CN	2.11	-0.7915	0.97	0.97	101.45	0.500	-0.979	0.468	-0.011

Table S2 Charge and structural parameters of polymer substrates with adsorbed water molecules

 D_{ads} = adsorption distance, l = bond length, θ° = bond angle, q = NBO charge

Table S3 Active sites in CN sample for H₂O adsorption and their binding energy values

Table S4 Active sites in PD-CN sample for H₂O adsorption and their binding energy values

Table S5 Active sites in BD-CN sample for H₂O adsorption and their binding energy values

Sample	Reaction Intermediates	Molecule	G+ZPC
	M-OH		-29451.35 eV
CN	M-O		-29436.61 eV
	М-ООН		-31482.71 eV

Table S6 Adsorption energy values of reaction intermediates on CN polymer substrate

Table S7 Adsorption energy values of reaction intermediates on PD-CN polymer substrate

Table S8 Adsorption energy values of reaction intermediates on BD-CN polymer substrate

Table S9 Adsorption energy values of reaction intermediates (M-H*) on carbon nitride polymer substrates