Supporting Information

Phase Boundary Enhanced Ni₃N-Co₃N@CNTs Composite Materials for Lithium

Ion Batteries

Han Zhou, Zhaoyang Li, Ke Wang, Mengqiu Gao and Shujiang Ding*

Department of Applied Chemistry, School of Science, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, China

Email: dingsj@xjtu.edu.cn

1. Materials and methods

1.1 Synthesis of metal nitrides and CNTs composite materials

1.1.1 Synthesis of Ni₃N-Co₃N@CNTs

The Ni₃N-Co₃N@CNTs was produced according our previous work¹. 15 mg sulfonated polystyrene coated CNTs were ultrasonic dispersion in 40 mL deionized water. For synthesis of Ni₃N-225 $Ni(NO_3)_2 \cdot 6H_2O_1$ 225 $Co(NO_3)_2 \cdot 6H_2O_1$ Co₃N@CNTs, mg mg 35.5 mg hexamethylenetetramine and 7.25 mg citric trisodium salt dehydrate were added to above solution. Then the mixed solution was heated to 90 °C for 6 h with stirring. The black products Ni-percursor@CNTs were collected by centrifugation. After washed with deionized water and ethyl alcohol for several times, the products were transferred to vacuum oven dried at 60 °C for 12 h. The Ni₃N@CNTs finally were obtained by annealing Ni-precursor@CNTs at 375 °C for 2 h with heating ramp rate of 1 °C min⁻¹ under ammonia flows velocity of 140 sccm.

1.1.2 Synthesis of Ni₃N@CNTs

The method is same as synthesis of $Ni_3N-Co_3N@CNTs$ without the addition of $Co(NO_3)_2 \cdot 6H_2O$ in the reaction solution.

1.1.3 Synthesis of Co₃N@CNTs

The method is same as synthesis of $Ni_3N-Co_3N@CNTs$ without the addition of $Ni(NO_3)_2 \cdot 6H_2O$ in the reaction solution.

1.2 Characterization

SEM images were collected using a JSM-7000F field-emission scanning electron microscopy (FESEM; HITACHI, su-8010) and TEM images were collected by using a JEM-2100 transmission electron microscope (JEOL, JEM-2100). Crystallographic information of the sample was collected using powder X-ray diffraction (XRD; Rigaku Smartlab X-ray diffractometer). Element analysis was tested using X-ray photoelectron spectroscopy (Kratos, AXIS ULtrabld). Thermogravimetric analysis (METTLER-TOLEDO TGA 1) was carried out under a flow of air with a temperature ramp of 10 °C/min from room temperature to 800 °C.

1.3 Electrochemical Measurements

The lithium storage performances were tested in 2025-type coin cell. The electrodes were prepared by mixing active materials (70%), conductive carbon black (super P, 20%) for conductive agent and Polyvinylidene Fluoride (10%) as binding materials. The electrode mass loading is circa 1.5 mg cm⁻². Pure lithium metal foil is used for counter electrode and the separator is microporous polypropylene film. The electrolyte is 1.0 M LiPF₆ in 1:1 w/w ethylene carbonate/diethyl carbonate. The CV tests are received from electrochemical workstation Chenhua CHI660e (Shanghai , China). The cycling performances were evaluated by Neware battery testing system (CT-4008). To characterize the resistance change during the cycling process, the electrochemical impedance spectra (EIS) were also collected on CHI 660e for with an amplitude of 5 mV over a frequency range from 100 kHz to 0.01 Hz.

Figure S1. SEM images of a) Ni₃N@CNTs and b) Co₃N@CNTs.

Figure S2. FESEM images of Ni₃N-Co₃N@CNTs after 30 cycles.

Figure S3. Nyquist plots of the Ni₃M-Co₃N@CNTs electrode measured with an amplitude of 5 mV over a frequency range from 100 kHz to 0.01 Hz.

Materials	Current density	Capacity	Cycle number	Reference
Co ₃ N thin film	7 μA cm ⁻²	420 mAh g ⁻¹	40	2
Fe ₃ N thin film	7 μA cm ⁻²	440 mAh g ⁻¹	40	2
Ni ₃ N thin film	7 μA cm ⁻²	320 mAh g ⁻¹	40	3
Fe ₃ N@Carbon cages	100 mA g ⁻¹	370 mAh g ⁻¹	500	4
Ni _{0.33} Co _{0.67} N	250 mA g ⁻¹	400 mAh g ⁻¹	50	5
Ni ₃ N@carbon cloth	1 C	498 mAh g ⁻¹	120	6
Cu ₃ N nanoparticles	1 A g ⁻¹	290 mAh g ⁻¹	150	7
Ni ₃ N nanoparticles	100 mA g ⁻¹	350 mAh g ⁻¹	50	8
TiN@MWCNTs	300 mA g ⁻¹	447 mAh g ⁻¹	100	9
Ni ₂ N thin film	120 mA g ⁻¹	461.9 mAh g ⁻¹	100	10
Ni ₃ N@CNTs		249.8 mAh g ⁻¹		
Co ₃ N@CNTs	400 mA g ⁻¹	327.4 mAh g ⁻¹	600	This work
Ni ₃ N-Co ₃ N@CNTs		553.26 mAh g ⁻¹		

 Table S2. Comparison in capacitive contributions for lithium storage of our designed Ni₃N

Co₃N@CNTs composites with previously reported literatures.

Material	Scan rate (mV s ⁻¹)	Capacitive effects	Reference
TiO ₂ nanoparticles	0.5	55%	11
TiO ₂ @C	1	63.86	12
Co ₃ O ₄ @N-carbon sphere	1	68.2	13
rGO/Fe ₃ O ₄ /AC	1	67.3%	14
Ni_3N - Ni_3S_2 nanoparticles	1	35.2%	15
MoO _{3-x} @glucose	1.1	32.1%	16
pristine Nb ₂ O ₅	1	77%	17
Sn@carbon sphere	0.4	43.3%	18
Ni ₃ N-Co ₃ N@CNTs	1	80.42%	This work

References

- 1. H. Zhou, L. Zhang, D. Zhang, S. Chen, P. R. Coxon, X. He, M. Coto, H.-K. Kim, K. Xi and S. Ding, Sci. Rep., 2016, 6, 37752.
- 2. Z. W. Fu, Y. Wang, X. L. Yue, S.-L. Zhao and Q.-Z. Qin, *The J. Phy. Chem/ B*, 2004, **108**, 2236-2244.
- 3. Y. Wang, Z.-W. Fu, X.-L. Yue and Q.-Z. Qin, J. Electrochem. Soc., 2004, 151, E162-E167.
- 4. H. Huang, S. Gao, A. M. Wu, K. Cheng, X. N. Li, X. X. Gao, J. J. Zhao, X. L. Dong and G. Z. Cao, Nano Energy, 2017, 31, 74-83.
- 5. B. Das, M. V. Reddy and B. V. R. Chowdari, *Nanoscale*, 2013, 5, 1961-1966.
- 6. M. S. Balogun, Y. X. Zeng, W. T. Qiu, Y. Luo, A. Onasanya, T. K. Olaniyi and Y. X. Tong, J. Mater. Chem. A, 2016, 4, 9844-9849.

- 7. R. Deshmukh, G. Zeng, E. Tervoort, M. Staniuk, D. Wood and M. Niederberger, Chem. of Mater., 2015, 27, 8282-8288.
- 8. B. Long, M. S. Balogun, L. Luo, W. Qiu, Y. Luo, S. Song and Y. Tong, Adv. Energy Mater., 2018, 8, 1701681.
- 9. Y. P. Yang, Y. G. Shi, G. Yao, L. Yu and W. N. She, Mater. Res. Express, 2018, 5, 7.
- 10. Z. Y. Ma, H. Zhang, X. Sun, J. Guo and Z. C. Li, Appl. Surf. Sci., 2017, 420, 196-204.
- 11. B. Dunn, H. Kamath and J.-M. Tarascon, Science, 2011, 334, 928-935.
- 12. L. Yu, J. Liu, X. Xu, L. Zhang, R. Hu, J. Liu, L. Yang and M. Zhu, ACS Appl. Mater. Inter., 2017, 9, 2516-2525.
- 13. H. J. Xue, Z. L. Na, Y. Q. Wu, X. X. Wang, Q. Li, F. Liang, D. M. Yin, L. M. Wang and J. Ming, J. Mater. Chem. A, 2018, 6, 12466-12474.
- 14. R. Ding, J. Zhang, J. Qi, Z. Li, C. Wang and M. Chen, ACS Appl. Mater. Inter., 2018, 10, 13470-13478.
- 15. B. Long, M.-S. Balogun, L. Luo, W. Qiu, Y. Luo, S. Song and Y. Tong, Adv. Energy Mater., 2018, 8, 1701681.
- 16. C. Yang, H. Lu, C. Li, L. Wang and H. Wang, Chem. 1 Eng. J.1, 2018, 337, 1-9.
- 17. D. Cao, Z. Yao, J. Liu, J. Zhang and C. Li, Energy Storage Mater., 2018, 11, 152-160.
- 18. N. Zhang, Y. Wang, M. Jia, Y. Liu, J. Xu, L. Jiao and F. Cheng, Chem. Commun., 2018, 54, 1205-1208.