Supplementary Information

One-step Construction of Core/Shell Nanoarrays with Holey Shell and Exposed Interfaces for Overall Water Splitting

Qingliang Lv, ^a Lei Yang, ^a Wei Wang, ^a, ^b **Siqi Lu, ^a Tianen Wang,** ^a Lixin Cao, ^{*a} and Bohua Dong^{*a}

^a School of Materials Science and Engineering, Ocean University of China, 238

Songling Road, Qingdao, 266100 P. R. China.

^b Aramco Research Center Boston, Aramco Services Company, Cambridge, MA02139, USA.

*Corresponding authors' Emails: <u>dongbohua@ouc.edu.cn</u> (B. Dong) and <u>caolixin@ouc.edu.cn</u> (L. Cao)

The possible reactions in the one-step synthesis of Ni_3S_2/VO_2 core/shell nanoarrys:

 $CH_{3}CSNH_{2}+H_{2}O \longrightarrow CH_{3}CONH_{2}+H_{2}S \uparrow$

 $3Ni+2H_2S \longrightarrow Ni_3S_2+2H_2\uparrow$

 $Na_3VO_4 + 4H_2O \xrightarrow{\Delta} NaVO_3 + 2NaOH$

 $2NaVO_3 + 4H_2 \longrightarrow V_2O_3 + 2NaOH$

 $2V_2O_3 + O_2 \longrightarrow 4VO_2$

Electrocatalyst	Electrolyt e	η [mV] for j_{OER} =10 mA cm _2	Tafel slope [mV dec ⁻¹]	Reference
Ni ₃ S ₂ /VO ₂	1M KOH	150	47	This work
Co(S _x Se _{1-x}) ₂	1М КОН	283	65.6	Adv. Funct. Mater. 2017, 27, 1701008
Co ₃ O ₄ -MTA	1М КОН	290	84	Angew. Chem. Int. Ed. 2017, 56, 1324- 1328
NiFe LDH-NS@DG	1М КОН	210	52	Adv. Mater. 2017, 29, 1700017
δ-FeOOH NSs/NF	1М КОН	265	36	Adv. Mater. 2018, 1803144
Co ₉ S ₈ @NOSC-900	1М КОН	340	68	Adv. Funct. Mater. 2017, 27, 1606585
Cu@CoSx/CF	1М КОН	160	-	Adv. Mater. 2017, 29, 1606200
NCP	1М КОН	280	-	J. Am. Chem. Soc. 2018, 140, 5241-5247
Ni _x Co _{3-x} S ₄ /Ni ₃ S ₂ /NF	1М КОН	160	95	Nano Energy 35 (2017) 161-170
Fe _{0.09} Co _{0.13} - NiSe ₂ /CFC	1М КОН	251	89	Adv. Mater. 2018, 1802121
2.5H-PHNCMs	1М КОН	235	45.7	Nat Commun 2017, 8, 15377
IFONFs-45	1М КОН	260	45	Nat Commun 2018, 9, 1809
FeCoNi-HNTAs	1М КОН	184	49.9	Nat Commun 2018, 9, 2452
Am FePO ₄	1М КОН	218	42.72	Adv. Mater. 2017, 1704574
FeP/Ni ₂ P	1М КОН	154	22.7	Nat Commun 2018, 9, 2551
PNGF (op)	1М КОН	320	86	Energy Environ. Sci. 2017, 10, 1186
A-CoS _{4.6} O _{0.6} PNCs	1М КОН	290	69	Angew. Chem. Int. Ed. 2017, 56, 4858
P-CC	1М КОН	450	65	Adv. Mater. 2017, 29, 1606027
CoNi(20 : 1)-P-NS	1М КОН	273	52	Energy Environ. Sci. 2017,10, 893
pc-Ni-B _i @NB	1М КОН	302	52	Angew. Chem. Int. Ed. 2017, 56, 6572
Au _{0.89} Fe _{0.11} NPs	1М КОН	800	-	Angew. Chem. Int. Ed. 2017, 56, 6589
NCNTFs	1М КОН	370	64	Nature Energy 2016, 1, 15006
VOOH nanospheres	1М КОН	227	68	Angew. Chem. Int. Ed. 2017, 56, 573
NC/CuCo/CuCoOx	1М КОН	198	88	Adv. Funct. Mater. 2018, 28, 1704447
Se-(NiCo)S/OH	1М КОН	155	34	Adv. Mater. 2018, 30, 1705538
MoS ₂ /Ni ₃ S ₂	1М КОН	218	88	Angew. Chem. Int. Ed. 2016, 55, 6702- 6707
Co ₃ S ₄ @MoS ₂	1М КОН	280	43	Nano Energy 47 (2018) 494-502

Figure S1. The changes of V 2p and Ni 2p of Ni_3S_2/VO_2 before and after the heterogenous structures formed.

Figure S2. The electrochemically active surface area (EASA) was estimated from the electrochemical double-layer capacitance. The electrochemical capacitance was determined from cyclic voltammograms measured in a non-Faradaic region at different scan rates. The ECSA was measured to evaluate the exposed catalytically active sites in the materials. (a) Ni foam; (b) Ni₃S₂; (c) VO₂; (d) Ni₃S₂/VO₂

Figure S3. Typical HAADF-STEM images of a single Ni_3S_2/VO_2 nanowire with numerous pores and exposed interfaces.

Figure S4. Illustration of holes formed on VO_2 the shell

Figure S5. The pore size distribution of Ni_3S_2/VO_2

Figure S6. Typical HAADF-STEM images of VS_xO_{2-x} layer on the surface of Ni_3S_2/VO_2

Method and Model: The models of Ni₃S₂ and VO₂ have been built, the surfaces of them have been cut along the (1 -2 1) and (-2 1 1) directions, respectivily, and the vacuum space along the z direction is set to be 15 Å, which is enough to avoid interaction between the two neighboring images. Six different interfaces between Ni₃S₂ and VO₂ have been built considering about the relative locations and the most stable interface has been used in the next. Then, O*, OH* and OOH* groups have been absorbed on the substrate surfaces and interfaces. The first principles calculations in the framework of density functional theory, including structural, electronic performances, were carried out based on the Cambridge Sequential Total Energy Package known as CASTEP. The exchange–correlation functional under the generalized gradient approximation (GGA) with norm-conserving pseudopotentials and Perdew-Burke-Ernzerhof functional was adopted to describe the electronelectron interaction.³ An energy cutoff of 750 eV was used and a k-point sampling set of 5 x 5 x 1 were tested to be converged. A force tolerance of 0.01 eV Å $^{-1}$, energy tolerance of 5.0x10⁻⁷eV per atom and maximum displacement of 5.0x10⁻⁴ Å were considered. Each atom in the storage models is allowed to relax to the minimum in the enthalpy without any constraints. Adsorption energy E_{ads} of A (=O, OH and OOH) group on the surface of substrates was defined as:

 $E_{ads} = E_{*A} - (E_{*} + E_{A})$

where *A and * denote the adsorption of A on substrates and the bare substrates, E_A denotes the energy of A group.

Free energy change ΔG of the reaction was calculated as the difference between the free energies of the initial and final states as shown below:

$$\Delta G = \Delta E + \Delta Z P E - T \Delta S + \Delta G_U + \Delta G_{pH}$$

where E is the calculated energy by DFT, ZPE is the zero point energy, S denotes the entropy, ΔG_U =-eU (e is the elementary positive charge, U is the potential of the photogenerated carrier vs normal hydrogen electrode) and ΔG_{pH} =-2.303k_BT pH. Here, k_B is the Boltzmann constant, T= 300K and pH =0 have been considered. The vibrational frequencies were calculated through DFT to obtain the ZPE and S values. The free energy of H⁺/ e⁻ pair is considered as half of free energy of H₂. The free

energy of O_2 has been calculated from the free energy change (4.92 eV) of the reaction $2H_2 + O_2 \rightarrow 2H_2O$.

- * + $H_2O \rightarrow OH^* + (H^+ + e^-)$ (1)
- $OH^* \rightarrow O^* + (H^+ + e^-)$ (2)
- $O^* + H_2O \rightarrow OOH^* + (H^+ + e^-)$ (3)
- $OOH^* \rightarrow {}^* + O_2 + (H^+ + e^-)$ (4)

Figure S7. Optimized structures of the intermediate states in OER on surface of Ni₃S₂

(1 -2 1)

Figure S8. Optimized structures of the intermediate states in OER on surface of VO_2

(-2 1 1)

Figure S9. Six different interfaces between Ni_3S_2 and VO_2 . The most stable interface

in 6 has been used.

Interfaces	Total energy (eV)			
1	-87037.1769			
2	-87032.3258			
3	-87037.7090			
4	-87033.1159			
5	-87037.6800			
6	-87039.9248			

Table S2. The corresponding energy in Figure S6.

Figure S10. Optimized interfaces of the intermediate states in OER on interface of

 Ni_3S_2/VO_2

Figure S11. Calculated PDOS of the d band of the Ni, V atoms in Ni_3S_2 , VO_2 and Ni_3S_2/VO_2 The d band center is marked by the pink dashed line, and the Fermi level is set as zero.

Figure S12. Schematic of the OER process on the surface of VO_2 (-2 1 1).

Figure S13. Schematic of the OER process on the surface of Ni_3S_2 (1 -2 1)

Table S3 Comparison of the electrocatalytic performance of Ni_3S_2/VO_2 with some representative bifunctional electrocatalysts reported recently for overall water splitting

Electrocatalyst	Electrolyte	η [V] for j _{ows} = 10 mA cm ⁻²	η [V] for j _{ows} = 20 mA cm ⁻²	η [V] for j _{ows} = 100 mA cm ⁻²	Reference
Ni ₃ S ₂ /VO ₂	1М КОН	1.42	1.45	1.65	This work
MoS ₂ /Ni ₃ S ₂	1М КОН	1.56	1.62	1.7	Angew. Chem. Int. Ed. 2016, 55, 6702
VOOH nanospheres	1М КОН	1.62	1.7	1.85	Angew. Chem. Int. Ed. 2017, 56, 573
Ni@NC-800/Ni foam	1М КОН	1.60	1.66	1.98	Adv. Mater. 2017, 29, 1605957
Co ₃ S ₄ @MoS ₂	1М КОН	1.58	1.62	1.85	Nano Energy. 2018,47 494-502
NiFe-MOF array	1М КОН	1.55	1.6	1.71	Nature Commun. 2017, 8, 15341
NC/CuCo/CuCoOx	1М КОН	1.53	1.57	1.75	Adv. Funct. Mater. 2018, 28, 1704447
Se-(NiCo)S/OH	1М КОН	1.6	1.65	2.05	Adv. Mater. 2018, 30, 1705538
FeCoNi-HNTAs	1М КОН	1.429	1.49	1.706	Nat Commun 2018, 9, 2452
2.5H-PHNCMs	1М КОН	1.44	1.50	-	Nat Commun 2017, 8, 15377
IFONFs-45	1М КОН	1.58	1.62	-	Nat Commun 2018, 9, 1809
Am FePO ₄	1М КОН	1.54	1.58	1.72	Adv. Mater. 2017, 1704574
FeP/Ni ₂ P	1М КОН	1.42	1.48	1.62	Nat Commun 2018, 9, 2551
Ni@NC-800/Ni foam	1М КОН	1.60	1.66	1.98	Adv. Mater. 2017, 29, 1605957
A-PBCCF-H NFs	1М КОН	1.56	1.65	1.8	Nano Energy 2017, 32 247
NiFe-MOF array	1М КОН	1.55	1.6	1.71	Nature Commun. 2017, 8, 15341
EG/H-Co _{0.85} Se P	1М КОН	1.64	1.85	-	Adv. Mater. 2017, 29, 1701589
Co(S _x Se _{1-x}) ₂	1М КОН	1.63	1.7	1.95	Adv. Funct. Mater. 2017, 27, 1701008
Co ₃ O ₄ -MTA	1М КОН	1.61	1.7	2	Angew. Chem. Int. Ed. 2017, 56, 1324-1328
NiFe LDH-NS@DG	1М КОН	1.45	1.5	1.8	Adv. Mater. 2017, 29, 1700017
δ-FeOOH NSs/NF	1М КОН	1.63	-	-	Adv. Mater. 2018, 1803144
Co ₉ S ₈ @NOSC-900	1М КОН	1.6	1.74	2	Adv. Funct. Mater. 2017, 27, 1606585
Cu@CoSx/CF	1М КОН	1.5	1.59	1.8	Adv. Mater. 2017, 29, 1606200
NCP	1М КОН	1.56	1.69	1.92	J. Am. Chem. Soc. 2018, 140, 5241-5247
Ni _x Co _{3-x} S ₄ /Ni ₃ S ₂ /NF	1М КОН	1.53	1.62	1.80	Nano Energy 35 (2017) 161-170
Fe _{0.09} Co _{0.13} -NiSe ₂ /CFC	1М КОН	1.52	1.57	1.67	Adv. Mater. 2018, 1802121
NiO NRs	1М КОН	1.62	1.66		Nano Energy 43 (2018) 103-109

Figure S14. TEM image, HAADF-STEM image of and element mapping images of Ni (d), S (e), and V (f) of Ni₃S₂/VO₂ CSN after water splitting test

Figure S15. SEM image of Ni₃S₂/VO₂ **CSN** after water splitting test.

Figure S16. The EDS spectrum of the elements V, Ni, S and O of Ni_3S_2/VO_2 CSN after water splitting test.

Figure S17. XPS spectra of Ni 2p and V 2p binding energies before and after water

splitting test.

Figure S18. The experimental H_2 and O_2 production versus theoretical quantities for overall water splitting of Ni₃S₂/VO₂ at the constant current density.