Supporting Information

Ultratough Nacre-inspired Epoxy-Graphene Composites with Shape Memory Property

Chuanjin Huang,^{†,⊥} Jingsong Peng,^{†,⊥} Yiren Cheng,[†] Qian Zhao,[‡] Yi Du^{¶,§}, Shixue Dou^{¶,§},

Antoni P. Tomsia,[†] Hanoch Daniel Wagner,^Δ Lei Jiang,^{†,§} and Qunfeng Cheng^{†,§,*}

[†]Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of

Education, School of Chemistry, Beijing Advanced Innovation Center for Biomedical

Engineering, Beihang University, Beijing 100191, P. R. China

[‡]State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China

[¶]Institute for Superconducting and Electronic Materials, Australian Institute for Innovative

Materials, University of Wollongong, Wollongong, New South Wales 2500, Australia

[§]BUAA-UOW Joint Research Centre, Beihang University, Beijing 100191, China

^ADepartment of Materials & Interfaces, Weizmann Institute of Science, Rehovot 76100, Israel

 $^{\perp}$ These two authors contributed equally to this work

*Correspondence should be addressed to Qunfeng Cheng, E-mail: cheng@buaa.edu.cn

Figure S1. Characterization of GO sheets. (a) SEM image of GO scattered on the surface of silicon. (b) The normal distribution of size of GO sheets.

Figure S2. The large-scale lamellar microstructures of a cross-section of scaffolds. (a) GO scaffold. (b) After heating to 800 °C, the space between the layers narrows in the rGO scaffold.

Figure S3. XPS of scaffolds before and after reduction. (a) GO scaffold contains C-C, C-O and C(O)O groups. (b) After thermal reduction, there is only C-C group in XPS curves.

Figure S4. The rGO scaffold shows anisotropic structure. (a) Lamellar structure of crosssection and (b) longitudinal section, (c) a large lamella on the side.

Figure S5. TGA curves of rGO, EP, and E-G-II. The residue of rGO is \sim 84.7 wt% and the curve of E-G-II is close to that of EP at 800 °C.

Figure S6. The fracture surfaces of EP and E-G-H, and nacre-like E-G composites. (a) The surface of EP is flat. (b) There are many stripes on the surface of E-G-H. (c) The layered structure of E-G-I and (d) aligned lamellar structure of E-G-II composite.

Figure S7. The stress-strain curves of (a) EP and (b) E-G-II perpendicular to the lamellar direction without notch upon three-point bending.

Figure S8. The electrical conductivity of E-G composites. The E-G composites show anisotropic conductivity. The conductivity of E-G-II composite is much higher than that of E-G-I composite.

Figure S9. The E-G-II composite in the perpendicular direction also can be fixed into various shapes such as a (a) circle, (b) twist and recover to their original shapes by heating or current.

Figure S10. (a) DSC curve and (b) DMA curves of E-G-II composite.

Figure S11. The consecutive shape memory cycles of (a) EP and (b) E-G-II composite.

Nanofiller	Abbreviation
Epoxy-graphene oxide	E-GO ⁵³
Epoxy-(3-glycidoxypropyl) trimethoxysilane graphene oxide	E-GPTS-GO ⁵⁴
Epoxy-silane-functionalized graphene oxide	E-s-GO ⁵⁵
Epoxy-reduction graphene oxide	E-RGO ⁵⁶
Epoxy-graphene nanoplatelets	E-GPL ⁵⁷
Epoxy-graphene platelets	E-GP ⁵⁸
Epoxy-graphene platelets-polyoxypropylene	E-G-J230 ⁵⁹
Epoxy-amine functionalized expanded graphene nanoplatelets	E-EGNP ⁶⁰
Epoxy-graphene foam	E-GF ⁶¹
Epoxy-carbon nanofibers	E-CNFs ⁶²
Epoxy-pristine carbon nanofibers	E-P-CNFs ⁶³
Epoxy-polydopamine carbon nanofibers	E-D-CNFs ⁶³
Epoxy-multiwalled carbon nanotube fibers	E-MWCNT ⁶⁴
Epoxy-clay	E-clay ⁶⁵
Epoxy-jeffamine XJT502 modified clay	E-Xjt-clay ⁶⁶

Table S1. Corresponding abbreviations of specific nanofillers