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Note S1. Detailed derivation of stress distribution

According to the mechanical equilibrium, when a force is applied to the hair shaft, a 

pressure (P) and a moment (M) will be generated around the hair root. As shown in Fig. 

1B, when the pressure is perpendicular to the half plane, the state of stress at any point 

is expressed as S1: 
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where  and  are polar radius and polar angle, respectively. Upon coordinate 
transformation, the stress (x

P) in the x direction is expressed as:
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where x and y are abscissa and ordinate, respectively. When the half plane is under 
moment (M), the state of stress at an arbitrary point can be expressed as:
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After coordinate transformation, the stress (x
M) in the x direction is expressed as:
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P is arbitrarily supposed to equal 0.1 N and M is assumed to equal 0.1L N.mm. The 

schematic of distributed force is presented in Fig. S22. The distributed force (q1) at the 

fixed end section of the hair induced by concentrated force is expressed as S2:
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0.4Pq
S d

 

where S is the cross sectional area of the hair and L is the length of hair. The distributed 

force (q2) at the fixed end section of the hair induced by pure moment is expressed asS2:
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where I and  are the moment of inertia and the distance from the point M(x, y) to the 

origin of the coordinate on the AB line, respectively. The total distributed force q(y) at 

the fixed end section of hair is expressed as: 
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The stress (x) in the x direction is expressed as:
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Therefore, x induced by distributed force is 
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where r is the radius of the hair, and r = d/2. According to equations (S5), x is 

expressed as:
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Thus, x is expressed: 
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where the aspect ratio () be defined as L/d. The function relation is made among the 

stress, diameter and aspect ratio of hair.

Therefore, (x=0.2,y=r) can be expressed as: 
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For a given nylon fiber, d = 0.2 mm, we can obtain

                             (S7)(x 0.2,y ) 1 1.8r    

Note S2. Effect of the Young’s modulus of hairs on sensitivity

The hair shaft can be considered as cantilever column under a uniaxial load. The hair 

shaft is deflected under compression (Fig. S23), and it will return to their initial 

positions after releasing the applied load. The exact differential equation of the 

deflection curve is then given by S1:
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where  is the angle between the slope of any point of cantilever column and the x-

axis and s is the arc length measured from the free end. The second-order differential 

equation is given by taking the arc length’s derivative of equation (S8a)
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Let k2 = F/EI, here for a circular cross section, the moment of inertia is I = d 4/64, the 

integration of  on both sides of equation (S9) gives
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Let p = sin (/2), and a new variable  is introduced and sin (/2) = p sin, then we 

get:
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where K(p) is complete elliptic integral of the first kind. Then, we can obtain an 

approximate expression:
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where Ef is the Young’s modulus of hair. Then, we can obtain S3,S4:
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When the number of hairs is n, then we get
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Meanwhile, K(p)=1.8541 can be obtained at . Considering equation (S12) and / 2 

k2 = F/EI, we can obtain 

                            (S16)
2

max 2

( ) fnK p E I
F P

L
 

Meanwhile, we can obtain

0

1 sin 2sin
2 cos cos

dy ds
kk

  
 

   
 

The aspect ratio () be defined as L/d, where L and d are hair length above the skin 

substrate and hair diameter, respectively. Thus, we can obtain
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where n = 30 is the number of the hairs. For the given nylon fiber, we can obtain
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The aspect ratio () can be obtained from equation (S16).
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For a given operating range F=0~0.1 N, the aspect ratio () of the hairs is estimated to 
equal 41.3 in terms of formula (S19). Therefore, the fiber length above the skin surface 
is ca. 7.4 mm.

Note S3. Effect of the Young’s modulus of human skin on sensitivity

Hooke law is expressed as S1: 

                                      (S20)
E
 

where  and   are stress and strain, respectively. E is Young's modulus. For the 

sensing properties of human skin, the smaller the modulus, the greater the strain, and 

the more sensitive to external stimuli. A minimum deformation amplitudes (min) of 

about 40 nm can be detected by human skin.S5 Therefore, the minimum strain (min) can 

be expressed as
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where H is the thickness of skin and H ≈ 2 mm. Therefore, the minimum strain (min) 

can be detected is about 2.0×10-5. For human fingertips, the pressure of gentle touch is 

about 1 KPa.S6 Therefore, we can obtain:

                            (S22)min 1mE KPa  

where Em is the modulus of skin. Therefore, we can obtain Em < 50 MPa.

At the same time, the skin needs a certain modulus to protect and buffer the human 

body and maintain its shape. For human skin, gravity (G) can be expressed as:

G gV

where  and g are density of skin and gravitational acceleration, respectively. Then, we 

can obtain:
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where S and H are the area and thickness of skin, respectively. G is stress induced by 

gravity (see Fig. S24). Therefore, we can obtain:

G gH 
Considering equation (S20), we can get:
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Therefore, the deformation () of skin under gravity can be expressed as

                    (S23)
2

0 0 2

H H

G
m m

gH gHdH dH
E E

     
The average strain ( ) of the skin under gravity can be expressed asG
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Therefore, the strain of skin under gravity should be less than min. Then, we can 

obtain:
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For the human skin,  ≈ 1.0×103 kg/m3, H ≈ 2 mm, and g ≈ 10 m/s2. Therefore, 

we can obtain Em > 0.5 MPa.

Meanwhile, the mean failure strain S7 (max) of skin is about 50% and the plantar 

pressure S8 obtained from barefoot is about 0.1 MPa. In order to ensure that the skin is 

not damaged, the strain is

                                      (S26)max 0.5
mE
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Therefore, we can obtain Em > 0.2 MPa. According to equations (S22), (S25) and 

(S26), the modulus of skin ranges from 0.5 MPa ~50 MPa, which is similar to the 

experimental results for the Young modulus (0.1~18.8 MPa) of human skin.33 

Considering Skin is a highly non-linear material. In the initial loading phase, skin has 
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very low modulus and large deformation occurs at a relatively low applied load, which 

will improve the sensitivity of skin.

 

Fig. S1. High magnitude SEM image of one human hair.
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Fig. S2. Stress-strain curve of PDMS. The Young's modulus of PDMS is estimated 

to be about 0.3 MPa.
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Fig. S3. Stress distributions along y axis. Stresses include x
P (green line) induced by 

pressure, x
M (black line) caused by moment and their sum of x

P +x
M (red line). (A) 

x = 1, (B) x = 0.5, (C) x = 0.2 and (D) x = 0.1 mm.
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Fig. S4. Dependence of stress (x
P +x

M) on hair diameter. The result was obtained 

in terms of equation (S4) based on the aspect ratio= 41.3 and x = 0.2 mm.
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Fig. S5. Dependence of stress (x
P +x

M) on hair aspect ratio. The result was 

obtained from equation (S4) based on the hair diameter d = 0.2 mm and x = 0.2 mm.
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Fig. S6. The angle () of hair bending and the maximum force (Pmax) as a function 

of Young’s modulus (Ef) of hairs. The results were obtained in terms of equations 

(S15 and S16) based on the number (n = 30) and length L=10 mm of hairs, I=d4/64 

and the diameter d = 0.2 mm of hairs. According to equation (S15), the angle () of 

hair bending decreases with increasing the modulus (arbitrary assumption F=0.1 N), 

which indicates that the lower the modulus, the higher the sensitivity. According to 

equation (S16), the maximum force (Pmax) increases with increasing the Young’s 

modulus, which indicates that the higher the modulus, the higher Pmax is.
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Fig. S7. Stress-strain curve of one nylon fiber as hair material. The nylon fiber is 

taken from a tooth brush. The Young's modulus and diameter of the nylon hair are 1.04 

GPa and 180 m, respectively, which are close to those of the human hair (≈ 0.25~4.2 

GPa 35 and d = 30~150 m 36). 
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Fig. S8. Dependence of bending moment (N·mm) on diameter and Yong’s modulus 

of hairs. The result was obtained in terms of equation (S17). When E is taken as a 

variable, d is fixed at 0.2 mm; similarly, when d is a variable, is fixed at 1.04 GPa.
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300 m 20 m

Fig. S9. SEM image of the carbonized paper. Carbonized paper (CP) was prepared 

through carbonization of single layer tissue paper.

Fig. S10. EDX spectrum of the carbonized paper. EDX results reveal that the 

elements of C, B, O, N, Na, F and Mg in the carbonized paper are 78.71, 19.81, 1.27, 

0.13, 0.05, 0.03 and 0.01 atomic %, respectively. It is obvious that carbon is the 

dominant element. In addition, the atomic content of Mg, F, N and Na constitutes only 

0.22% of the total material, which is normal for carbonized paper obtained from 

biomass.
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Fig. S11. The RCR response of the EH sensor with different h. h is the distance of 

the piezoresistive material from the EH surface, and the EH sensor shows the maximum 

RCR when h = 0.2 mm.

Fig. S12. The sensitivity of the EH sensors with different h. At h = 0.2 mm, the EH 

sensor shows the highest sensitivity, which is similar to human skin.31,32 
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Fig. S13. Theoretical and experimental verification of the maximum stress position 

along x-axis (y = 0.5 mm). (A) Stress distribution of f1(x) =x
P +x

M at y = 0.5 mm 

and f2(x) = x
P - x

M at y = - 0.5 mm along x axis. (B) The sensitivity of the EH sensors 

with different h. At h = 0.5 mm, the EH sensor shows the highest sensitivity. 

 

(A)                                  (B) 

Fig. S14. The RCR response of the EH sensor monitored by M2. (A) When bending 

is applied to M1 and (B) when cyclic loading is applied to M2. 
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Fig. S15. The RCR response of the EH sensor to a limit force of 1 mN. The results 

are similar to that (1 mN) of the previous report.28

Fig. S16. Effect of humidity on the sensing performance of the EH sensor. When 

the humidity increases from 50% to 95%, the relative resistance and sensitivity of the 

EH sensor is reduced by about 1% and 5%, respectively.
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Fig. S17. SEM image of plate A. The roughness is about 200 microns.

Fig. S18. The interval of grooves in plates B and C. The results are obtained in 

terms of the RCR curves monitored.
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Fig. S19 The response and recovery time of the EH sensor to airflow. Under various 

air flowrates, the response and recovery time was recorded for the EH sensor.

 

Fig. S20 Response of the EH sensor to walking and jogging. The sensor is fixed on 

an arm of a man. When the man walks or jogs, the hairs will deform and cause the 

resistance change of the EH sensor. Thus, the motion signals can be monitored by the 

EH sensor.
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Fig. S21. FT-IR spectrum of nylon fibers. In the frequency range below 1500 cm-1 

the observed peaks have medium/weak intensities, while in the 1700–1500 cm-1 

frequency range the observed peaks are strong and are assigned for amide I and II bands. 

The intense amide I and II bands (namely C-N stretching of amide II band at ~1546 

cm-1, C=O stretching vibration of amide I band at ~1639 cm-1) are observed in the 

frequency range of 1700~1500 cm-1. The bands at ~3034 cm−1 and ~3387 cm−1 are of 

special interest because they are related to hydrogen bonding. N-H bending vibration 

of amide is at ~3470 cm−1. S9,S10

Fig. S22 Half plane under distributed force. Stress distributions are analyzed in the 

Supplementary Materials.
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Fig. S23 Schematic showing of hair shaft deformation under an applied force F. 

When = /2, it reaches the maximum working force (Fmax).

Fig. S24 Schematics of the structure of hair cells and parameters.
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Table S1. Comparison of the present EH sensor with existing hair sensors.

Materials
Force 

Sensitivity 
(N-1)

Roughness
(m)

Airflow 
Sensitivity 
(smm)

Resolution
(mN)

Air 
Direction

Ref. 
No.

Cobalt/SR 0.034~6.9 NA NA ~ 0.1 NO 28

rGO/HH 0.0049 NA NA 3000 NO 29

Alloy/SR 0.036 NA NA NA NO S11

PD/SR NA 0.5~50 NA NA NO 39

CNT/SR NA 15 NA NA NO S12

Silicon/SR NA 200 NA NA NO S13

CNT/SR NA 200 NA NA NO 27

rGO/SR NA 200 NA ~ 1 NO S14

Graphene/s
ponge

NA 200 NA NA NO S15

Gold/silico
n

NA NA ~0.079 NA NO S16

CB/polyimi
de

NA NA 0.066 NA NO S17

IN/SR NA NA 0.17 ~ 0.1 NO 30

Nylon/SR 0.7 200 0.1 ~ 1 YES Present 
work

Note: NA indicates not available; SR indicates silicone rubber, here is PDMS; rGO 

indicates reduced graphene oxide; HH indicates human hair; CNT indicates carbon 

nanotube; IN indicates iron nanowire; PD indicates polyvinylidene difluoride; CB 

indicates carbon black powder.

It is clear from Table S1 that most of existing hair sensors are either single modular 

or are not highly sensitive. By the contrary, the present biomimetic multi-responsive 

EH sensor is not only highly sensible but also capable of detecting multiple signals of 

pressure, surface roughness and airflow rate/direction, etc. like human shin. It should 

be pointed out that only in the present work, human skin is fully mimicked by using 

nylon fibers as hairs and PDMS as human skin. The nylon fibers have similar 

geometrical sizes, Young’s modulus and embedded depth as human hairs in human 

skin. PDMS as base material for encapsulation of the hair sensor has also similar 
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Young’s modulus as that of human skin. Therefore, it is understandable that the present 

EH sensor is multi-responsive and highly sensitive to pressure, surface texture and 

airflow, etc. like human skin.
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