Electronic Supplementary Information for

Atomistic understanding of structural evolution, ion transport and oxygen stability in layered NaFeO₂

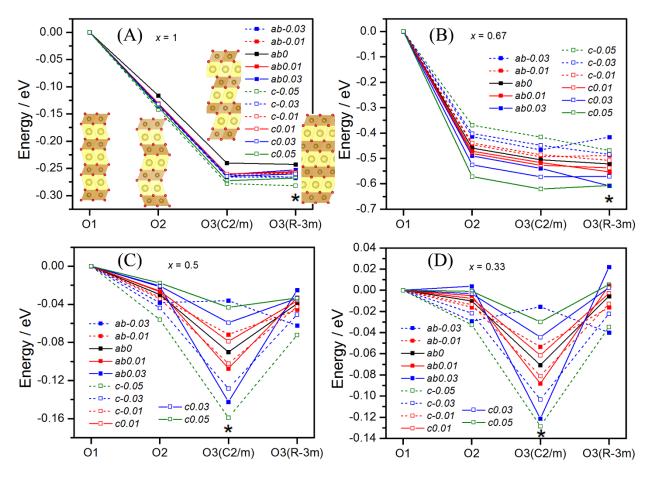
Yurui Gao, a Zhaoxiang Wangb,c and Gang Lu*a

Table 1S. The lattice parameters of Na_xFeO_2 (x = 1, 0.67, 0.5 and 0.33) and the average thickness of FeO_6 (d1) and NaO_6 slabs (d2), unit spacing (d), and bond distance of Fe-O (d_{Fe-O}) in them.

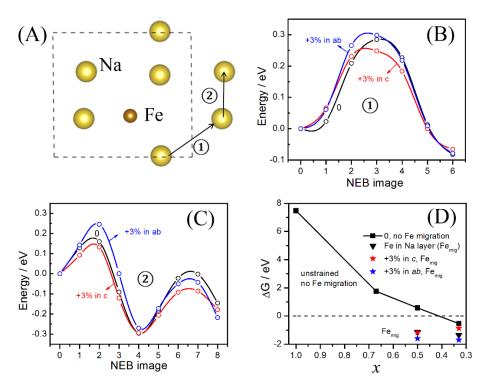
	x	а	b	с	α	β	γ	d1	d2	d	dFe-O
Expt. ^a	1	3.03	3.03	16.10	90	90	120				
	0.36	5.27	2.90	5.92	90		90				
Calc.b	1	3.04	3.04	16.10	90	90	120	2.18	3.18	5.37	2.07
	0.67	2.99	2.99	16.57	90	90	120	2.12	3.40	5.52	2.03
	0.5	5.23	2.94	5.94	90	108	90	2.08	3.58	5.65	2.00
	0.33	5.19	2.94	5.99	90	107	90	2.03	3.71	5.74	1.98

Note: ^a data from reference 1; ^b data calculated in this work.

Table 2S. The energy barriers for Na hop in NaFeO₂ with different in-plane and out-of-plane (c-direction) strains.


strain	+6.25%	+5%	+3%	+1%	0	-1%	-3%	-5%	-6.25%
Ea(ab) / eV		0.175	0.182	0.202	0.209	0.214	0.232	0.252	
Ea(c) / eV	0	0.013	0.062	0.156	0.209	0.269	0.400	0.580	0.709

^aDepartment of Physics and Astronomy, California State University Northridge, Northridge, California 91330-8268, USA. *E-mail: ganglu@csun.edu.


^bKey Laboratory for Renewable Energy, Chinese Academy of Sciences, Beijing Key Laboratory for New Energy Materials and Devices, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.

^c School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China.

The energy of Na_xFeO_2 (x = 1, 0.67, 0.5 and 0.33) with O1, O2 and O3 stacking, where O3 stacking further includes the C2/m and R3m structure, are calculated. The results are shown by solid black line with solid squares in Figure 1S, indicating that the O3 stacking Na_xFeO₂ has the lowest energy in the range of $0.33 \le x \le 1$. Therefore, the O3 stacking Na_xFeO₂ tend not to transit into the O1 nor O2 even when as much as 0.67 Na ions removed. Moreover, for x = 1 and 0.67, the R $\overline{3}$ m structured Na_xFeO₂ is energetically more stable than the C2/m structured, while the latter is energetically more stable than the former when x = 0.5and 0.33, consistent with the experimental results and confirming the rationalization of our models. When biaxial strain within 0.03 or uniaxial strain within 0.05 is applied, the O3 stacking Na_xFeO₂ still has lower energy than the O1 and O2 stacking Na_xFeO₂, although the C2/m structured Na_xFeO₂ may display slight lower energy than the R $\bar{3}$ m structured when x = 1 and 0.67 or the R $\bar{3}$ m structured Na_xFeO₂ may show slight lower energy than the C2/m structured when x = 0.5 and 0.33 at some certain strains. One thing to notice is that the energy difference of R3m and C2/m structured Na_xFeO₂ at these special strains is in the order of 0.01 eV or smaller, which is about the error of the DFT calculations and negligible compared with the energy change in diffusion barriers and $\triangle G$ caused by the strains (in the order of 0.1 eV or larger). Moreover, the R $\overline{3}$ m structure (at x = 1 and 0.67) or the C2/m structure (at x = 0.5 and 0.33) can be maintained in most cases when strain applied since the strains applied in this work is rather small. Therefore, we directly applied strains on the $R\bar{3}$ m-structured Na_xFeO₂ at x=1,0.67 and the C2/m-structured Na_xFeO₂ at x=0.5 and 0.33.

Figure 1S. Total energy of Na_xFeO_2 in the O1, O2 and O3 (including C2/m and R $\overline{3}$ m) stacking structures under strains (positive for tension and negative for compression in the *ab* plane or in the *c*-direction) at x = 1 (A), 0.67 (B), 0.5 (C) and 0.33 (D). The energy of Na_xFeO_2 with the O1 stacking is set to zero.

Figure 2S. Diffusion energy barriers for Na ion along two continuous pathways (A) after Fe³⁺ ion moving into the Na layer with or without strains (B and C for pathway 1 and 2, respectively). Gibbs free energy ($\triangle G$) of O₂ release (D) from Na_{0.33}FeO₂ and Na_{0.5}FeO₂, each containing one Fe³⁺ at the Na layer without strain (inverted black triangles), with 3% uniaxial tension in *c*-direction (red stars), 3% biaxial tension in the *ab* plane (blue stars). $\triangle G$ of O₂ release from Na_xFeO₂ (x = 1, 0.67, 0.5 and 0.33) without strain is shown in black line with squares for comparison.

References

1. Y. J. Li, Y. R. Gao, X. F. Wang, X. Shen, Q. Y. Kong, R. C. Yu, G. Lu, Z. X. Wang and L. Q. Chen, *Nano Energy*, 2018, **47**, 519.