Supporting Information

Design and Synthesis of Room Temperature Stable Li-Argyrodite Superionic Conductors *via*Cation Doping

Zhuoran Zhang^{a,b,†}, Yulong Sun^{a,†}, Xianbao Duan^c, Linfeng Peng^a, Huanhuan Jia^{a,b}, Yunyang Zhang^{a,b}, Bin Shan^b, and Jia Xie^{a,*}

Table S1. Energy difference (ΔE) of various ionic substitutions (Al, B, Ge, Si) argyrodites and pure Li₇PS₆ between HT and LT phase

substitution	Ент (eV/Å)	E _{LT} (eV/Å)	∆Е(Е нт –Е ∟т) (eV/Å)	Stable phase
None	-234.79627	-234.82979	-0.03352	LT phase
Si	-234.95776	-234.78552	0.17224	HT phase
Ge	-230.67633	-230.52328	0.15305	HT phase
Al	-230.05914	-231.27840	-1.21926	LT phase
В	-235.19432	-235.28478	-0.09046	LT phase

^a State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Wuhan 430074, China.

^b State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

^c School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430073, Hubei, China

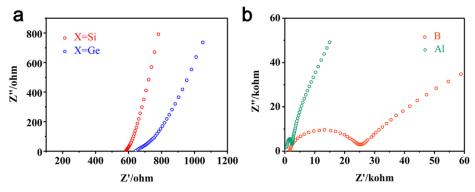

[†] These authors contributed equally to this work.

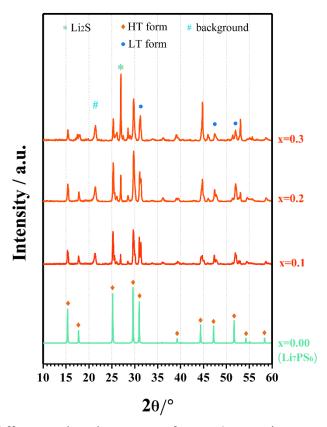
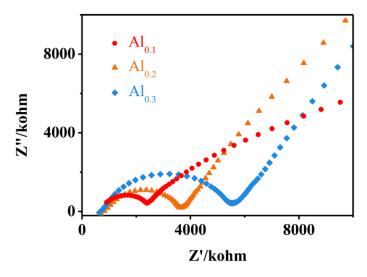
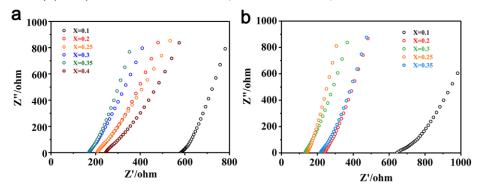
Table S2. Composition dependence of the Ionic Conductivity of Cold-Pressed Powder at Room Temperature

Li _{7.2} B _{0.1} P _{0.9} S ₆	Li _{7.2} Al _{0.1} P _{0.9} S ₆		
Ionic conductivityσ/ S cm ⁻¹	Ionic conductivityσ/ S cm ⁻¹		
9.88×10 ⁻⁶	8.52×10 ⁻⁵		

Table S3. Rietveld refinements of X-ray diffraction data for $Li_{7.25}Ge_{0.25}P_{0.75}S_6$ at 298 K.

Li _{7.25} Ge _{0.25} P _{0.75} S ₆ structure from X-ray diffraction data (space group $F\overline{4}$ 3m); $a = 9.9543(1)$ Å									
Fit residuals (R_{wp} , R_{exp} , χ^2): 6.46%, 4.72%, 2.86									
Atom	Site	х	у	Z	Occ.	U _{iso} / Å ²			
Li1	48h	0.823(2)	0.498(1)	0.676(2)	0.60(1)	0.1043(9)			
S1	16e	0.623(1)	<i>x</i> (S1)	<i>x</i> (S1)	1	0.0244(4)			
S2	4c	0.250	<i>x</i> (S2)	<i>x</i> (S2)	1	0.0164(9)			
S 3	4a	0	<i>x</i> (S3)	<i>x</i> (S3)	1	0.0302(1)			
Ge1	4b	0.500	<i>x</i> (Ge1)	x(Ge1)	0.23(2)	0.0531(3)			
P1	4b	<i>x</i> (Ge1)	<i>x</i> (Ge1)	<i>x</i> (Ge1)	1- Occ.(Ge1)	U _{iso} (Ge1)			

Figure S1. a. Nyquist plots of $Li_{7.1}M_{0.1}P_{0.9}S_6$ (M = Si, Ge), **b**. Nyquist plots of $Li_{7.2}N_{0.1}P_{0.9}S_6$ (N = B, Al) at room temperature.

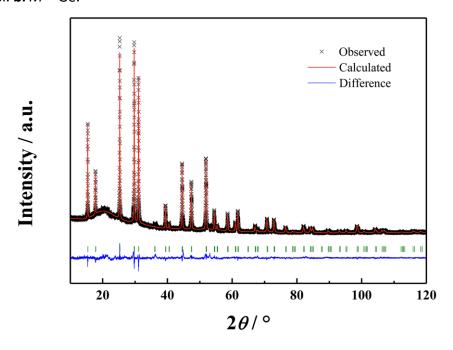

Figure S2. X-ray diffraction (XRD) patterns of $Li_{7+2x}Al_xP_{1-x}S_6$ (x = 0.1, 0.2, 0.3).

Figure S3. Nyquist plots of $Li_{7+2x}AI_xP_{1-x}S_6$ (x = 0.1, 0.2, 0.3).

Figure S4. Nyquist plots of $Li_{7+x}M_xP_{1-x}S_6$ (M = Si, Ge , x = 0.1–0.4) at room temperature. **a.** M = Si. **b.** M = Ge.

Figure S5. Rietveld refinement pattern of $Li_{7.25}Ge_{0.25}P_{0.75}S_6$ at 298 K. Experimental data are shown as points; Red: calculated intensities; black: observed intensities; blue: difference profile. The green markets indicate the positions of the diffraction lines.

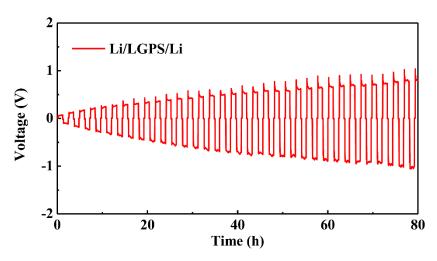
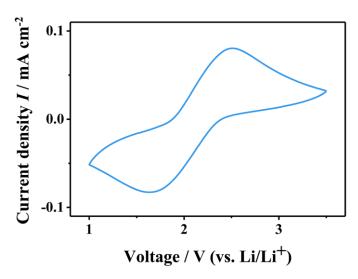
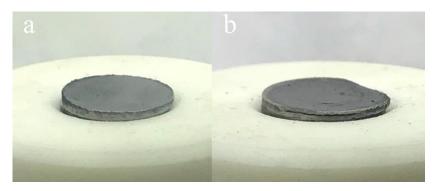




Figure S6. Potential profiles during galvanostatic cycling for a Li/LGPS/Li cell.

Figure S7. Cyclic voltammogram for a Li/Li_{7.25}Si_{0.25}P_{0.75}S₆/TiS₂ cell; from 1 to 3.5 V at a scan rate of 1 mV s⁻¹.

Figure S8. Photographs of TiS₂/SE/Li all-solid-state cell before (a) and after (b) charge-discharge cycle.