Appendix A. Supplementary data

Enhanced Catalytic Benzene Oxidation over a Novel

Waste-derived Ag/Eggshell Catalyst

Yunlong Guo, a Da-Peng Yang, b* Minghuan Liu, b Xiaoyan Zhang, b Yisong Chen, b

Jiale Huang, ^{a*} Qingbiao Li^a and Rafael Luque^{c,d*}

^aDepartment of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China

^bCollege of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou 362000, Fujian Province, PR China, <u>Tel:+86-22870772</u>; Email address: <u>vangdp@gztc.edu.cn</u>

^cDepartamento de Quimica Organica, Universidad de Cordoba, Campus de Rabanales, Edificio Marie Curie (C-3), Ctra Nnal IV-A, Km. 396 E-14014, Cordoba (Spain), Tel: +34-957211050; fax: +34-957212066. E-mail address: <u>rafael.luque@uco.es</u>

^dPeoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya str., 117198, Moscow, Russia

Fig. S1 (a-b) SEM images of Ag₂/Eggshell and the corresponding EDX elemental mapping images of Ag, C, Ca and O.

Fig. S2 SEM image of the pure Ag NPs.

Fig. S3 Benzene conversion as a function of reaction temperature over pure eggshell at SV=20,000 mL/g/h.

Fig. S4 SEM images and the corresponding histograms of Ag NPs distribution (insets) of xAg/Eggshell with different Ag loadings: (a) Ag₁/Eggshell, (b) Ag₂/Eggshell and (c) Ag₃/Eggshell.

Fig. S5 XRD patterns of Ag₂/Eggshell with different calcined temperatures.

Fig. S6 SEM images and the corresponding histograms of Ag NPs distribution (insets) of Ag₂/Eggshell with different calcined temperatures: (a) 300, (b) 400, (c) 500 and (d) 600 °C.

Fig. S7 (A) SEM image (insert: the histogram of Ag NPs distribution), (B) TG/DTG profile, (C) XRD pattern, (D) Ag 3d XPS spectrum and (E) O 1s XPS spectrum (F) UV-vis DRS spectra of the Ag₂/Eggshell after reaction of 200 h at 230 °C.

Fig. S8 Effects of different SV onto the catalytic activity of the $Ag_2/Eggshell$ catalyst, (A) the relationship between benzene conversion and temperatures (B) the relationship between CO_2 yield and temperatures.

Fig. S9 (a) SEM image and (b) the corresponding histogram of size distribution of Ag NPs of Ag₂/com-CaCO₃ catalyst.

Fig. S10 SEM images of (a) pure eggshell and (b) $Ag_2/Eggshell catalyst$.

Fig. S11. Nitrogen adsorption-desorption isotherm and the corresponding pore size distribution curves (inlet) of various supports and Ag catalysts.

Sample	BET surface area (m ² /g)	Pore volume ^a (cm ³ /g)
Eggshell	<5	0.008
Ag ₂ /Eggshell	<5	0.004
com-CaCO ₃	<5	0.006
Ag ₂ /com-CaCO ₃	<5	0.003

Table S1. Textural properties of various supports and Ag catalysts.

^a Calculated from the volume adsorbed at P/P0 = 0.99. ^b Calculated from the desorption branch of nitrogen isotherm by using the BJH model.

Fig. S12 In situ FTIR spectra reacted in 1000 ppm benzene/N₂ stream at 260 °C over $Ag_2/Eggshell$ at different times.

Table S2 Catalytic performance comparison of various catalysts on benzene oxidation reported in the literature.

Catalyst	Preparation method	Concentration	Space velocity		Ref.
Cataryst		(ppm)		1 _{90%} (C)	
1.0Pt/CeO ₂ /Al ₂ O ₃	Wet impregnation	1000	8,400 mL/g/h	245	1
5Ag/ZrO ₂	Impregnation	395	120,000 mL/g/h	315	2
0.2Pd-Ni/SBA-15	Co-impregnation	1000	120,000 mL/g/h	258	3
$2.0 Au/p-SnO_2$	Deposition-precipitation	2000	18,000 mL/g/h	367	4
0.8Pd/Ceramic-S	Impregnation	1500	90,000 mL/g/h	225	5
0.2Pd/La-ZSM-5-OM	Chemical impregnation	1000	20,000 h ⁻¹	250	6
Ag ₂ /Eggshell	Impregnation	1000	20,000 mL/g/h	225	This work

References

- 1. Z. Abbasi, M. Haghighi, E. Fatehifar and S. Saedy, *Journal of Hazardous Materials*, 2011, **186**, 1445-1454.
- 2. C. Lee, Y.-G. Shul and H. Einaga, *Catalysis Today*, 2017, **281**, 460-466.
- 3. W. Tang, Y. Deng and Y. Chen, *Catalysis Communications*, 2017, **89**, 86-90.
- 4. W. Jiang, Y. Pang, L. Gu, Y. Yao, Q. Su, W. Ji and C.-T. Au, *Journal of Catalysis*, 2017, **349**, 183-196.
- 5. H. Deng, S. Kang, C. Wang, H. He and C. Zhang, *Chemical Engineering Journal*, 2018.
- F. Liu, S. Zuo, C. Wang, J. Li, F. S. Xiao and C. Qi, *Applied Catalysis B Environmental*, 2014, 148-149, 106-113.