Supplementary Information

Rechargeable Na/Ni battery based on the Ni(OH)₂/NiOOH redox

couple with high energy density and good cycling performance

Seungyoung Park,^a Ziyauddin Khan,^a Tae Joo Shin,^b Youngsik Kim^a and Hyunhyub Ko*^a

^aSchool of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
^bUNIST Central Research Facilities (UCRF), Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea

*Corresponding Author

Email: hyunhko@unist.ac.kr

Fig. S1 STEM-EDS cross-sectional mapping images of the hydroxide layer on the carbon microfiber electrode.

Fig. S2 Summary of XPS spectra recorded to analyze the chemical bonding in the NCA-LDH/C electrode. (a) Summary XPS spectra, (b) C 1s spectrum, (c) O 1s spectrum, (d) Ni 2p spectrum, (e) Co 2p spectrum, and Al 2p spectrum of NCA-LDH/C electrode.

Fig. S3 TEM images and STEM-EDS mapping images of NCA-LDH sheets.

Fig. S4 SEM image and SEM-EDS spectra of NCA/C electrode.

Fig. S5 FT-IR spectrum of NCA-LDH sheets.

Fig. S6 SEM images of (a) α -Ni(OH)₂/C and (b) NiAl-LDH/C electrodes.

Fig. S7 Comparative XRD results for (a) the α -Ni(OH)₂/C, (b) NiAl-LDH/C, and (c) NCA-LDH/C electrodes.

Fig. S8 Electrochemical results for NCA-LDH/C. (a) CV curves at different current rates. (b) Galvanostatic charge–discharge curves. (c) EIS analysis of NCA-LDH/C electrode.

Fig. S9 (a) SEM images and (b) XRD spectra of NiCo-LDH/C electrode.

Fig. S10 (a) CV curve, (b) specific capacity as the current density and (c) cycle stability of NiCo-LDH/C electrode.

Fig. S11 Electrochemical results for NCA powder, NCA powder + carbon black (CB), and the NCA-LDH/C electrode. CV curves of (a) NCA powder, (b) NCA powder + CB, and (c) the NCA-LDH/C electrode. (d) Summary of CV curves and (e) Comparative rate capability of NCA powder, NCA powder + carbon black (CB), and the NCA-LDH/C electrode.

Fig. S12 SEM images of NCA-LDH/C electrode with different solvent mixtures. (a) DI water: DMF = 9:1. (b) DI water: DMF = 5:5.

Fig. S13 Comparative XRD results with different solvent mixtures. (a) DI water: DMF = 9:1. (b) DI water: DMF = 5:5. (c) DI water: DMF = 1:9.

Fig. S14 Electrochemical results for NCA-LDH/C with different solvent mixtures. (a) Summary of CV curves and (b) Galvanostatic discharge curves with with different solvent mixtures

Fig. S15 SEM images of NCA-LDH/C electrode as the different ratio of Ni, Co, Al atom.

Fig. S16 XRD spectra of NCA-LDH electrode as the different ratio of Ni, Co, Al atom.

Fig. S17 (a) CV curve and (b) discharge curve of NCA-LDH/C electrode as the different ratio of Ni, Co, Al atom.

Fig. S18 Pourbaix diagram of Ni(OH)₂, which represents the relationship between the potential and pH.¹ The reduction potential of Ni(OH)₂ is dependent on the pH value (which corresponds to the concentration of NaOH solution), leading to the variable operating voltage of the Na/Ni battery as the concentration of NaOH.

Fig. S19 Typical charge-discharge curves of Na-Ni battery during 1500 cycles.

Fig. S20 (a) Charge-discharge profile and (b) cycle stability of Na-Ni battery in 5M NaOH.

Fig. S21 Characteristics of NASICON after charge–discharge cycling. (a) SEM images of NASICON (a) before and (b) after cycle test of Na/Ni battery. The inset shows the photo images of NASICON. (c) XRD pattern of NASICON before and after cycle test.

	Anode	Cathode	Voltage (V)	Capacity	Energy density	D-C
				(mAh g ⁻¹)	$(Wh kg^{-1})$	Kej.
Li-ion	Graphite	LiCoO ₂	3.9	120	468	2
NiMH	Metal hydride	Ni(OH) ₂	1.28	160	205	3
Aqueous Na-ion	Na _{0.44} MnO ₂	Carbon	1.1	45	49.5	4
TiO ₂ /Ni(OH)	, TiO ₂	Ni(OH) ₂	1.74	68.7	119.5	5
Fe/Ni	FeOx	β -Ni(OH) ₂	1.04	115	120	6
Zn/Co	Zn	Co ₃ O ₄	1.78	135	288	7
Zn/Mn	Zn	MnO ₂	1.44	285	410	8
Na/Ni	Na	NiCoAl- LDH/C	3.1	350	1085	This work

Table S1. Comparative results for rechargeable battery systems.

Supplementary references

- Carmichael, C. Making Economical, Green, High-Energy Nickel-Manganese (NiMn) Batteries, Available online: http://www.saers.com/recorder/craig/TurquoiseEnergy/ BatteryMaking/BatteryMaking.html
- 2 Pan, H., Shao, Y., Yan, P., Cheng, Y., Han, K. S., Nie, Z., Wang, C., Yang, J., Li, X., Bhattacharya, P., Mueller, K. T., Liu, J. *Nat. Energy* 2016, 1, 16039.
- 3 Kim, H., Hong, J., Park, K.-Y., Kim, H., Kim, S.-W., Kang, K. *Chem. Rev.* 2014, **114**, 11788.
- 4 Okubo, M., Hosono, E., Kim, J., Enomoto, M., Kojima, N., Kudo, T., Zhou, H., Honma,
 I. J. Am. Chem. Soc. 2007, 129, 7444-7452.
- 5 Li, B., Cao, H., Shao, J., Zheng, H., Lu, Y., Yin, J., Qu, M. Chem. Commun. 2011, 47, 3159-3161.
- 6 Liu, S., Pan, G. L., Yan, N. F., Gao, X. P. Energy Environ. Sci. 2010, 3, 1732.
- 7 Wang, X.; Wang, F.; Wang, L.; Li, M.; Wang, Y.; Chen, B.; Zhu, Y.; Fu, L.; Zha, L.;
 Zhang, L.; Wu, Y.; Huang, W. Adv. Energy Mater. 2016, 28, 4904-4911.
- 8 Wang, H., Liang, Y., Gong, M., Li, Y., Chang, W., Mefford, T., Zhou, J., Wang, J., Regier, T., Wei, F., Dai, H. *Nat. Commun.* 2012, **3**, 917.