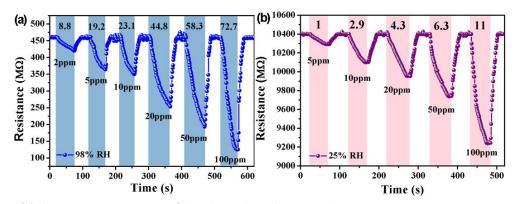
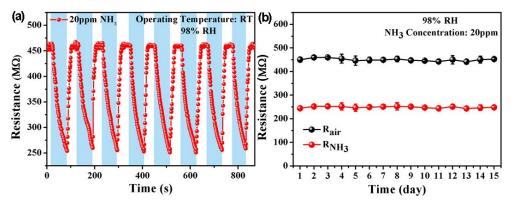
Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2019

## The rapid-response room temperature planar type gas sensor based on the DPA-Ph-DBPzDCN for sensitive detection of NH<sub>3</sub>


Junming He<sup>a</sup>, Xianju Yan<sup>b</sup>, Ao Liu<sup>a</sup>, Rui You<sup>c</sup>, Fangmeng Liu<sup>a</sup>\*, Siqi Li<sup>a</sup>, Jing Wang<sup>a</sup>, Chenguang Wang<sup>a</sup>, Peng Sun<sup>a</sup>, Xu Yan<sup>a</sup>, Bonan Kang<sup>a</sup>, Jinghui He<sup>d</sup>, Yue Wang<sup>b</sup>\* and Geyu Lu<sup>a</sup>\*

<sup>a</sup>State Key Laboratory on Integrated Optoelectronics, Key Laboratory of Advanced gas sensors, Jilin Province, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China.


<sup>b</sup>State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China.

<sup>c</sup>Department of Precision Instrument, Tsinghua University, Beijing 100084, China.

<sup>d</sup>College of Chemistry, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China.



**Fig.S1.** (a) The response transients of the device based on DPA-Ph-DBPzDCN to 2-100 ppm NH $_3$  at room temperature and the 98% RH; (b) The response transients of the device based on DPA-Ph-DBPzDCN to 5-100 ppm NH $_3$  at room temperature and the 25% RH.



**Fig.S2.** (a) Repeatability of the response of the DPA-Ph-DBPzDCN sensors to 20 ppm  $NH_3$  at room temperature and the 98% RH; (b) Stability of the DPA-Ph-DBPzDCN sensor stored unencapsulated at room temperature and the 98% RH for 15 days.

All DFT calculations were performed based on a level of GGA-UBLYP/DNP implemented in DMol3 code. Hydrogen bonding and van der Waals (vdW) interactions were semi-empirically estimated by a Tkatchenko-Scheffler (TS) scheme.<sup>1</sup>

**Table.S1.** The DFT calculated absorption energies of NH<sub>3</sub> and H<sub>2</sub>O molecules on the DPA-Ph-DBPzDCN.

| Configuration       | Adsorption Energy (eV) |                  | Adsorption      | Adsorption Distance (Å) |  |
|---------------------|------------------------|------------------|-----------------|-------------------------|--|
| Gas species         | NH <sub>3</sub>        | H <sub>2</sub> O | NH <sub>3</sub> | H <sub>2</sub> O        |  |
| A: Trihpenylamine-N | 0.56                   | 0.30             | 2.17            | 2.02                    |  |
| B: Dazine-N         | 0.41                   | 0.22             | 2.19            | 2.11                    |  |
| C: Cyan-N           | 0.39                   | 0.26             | 2.28            | 2.07                    |  |

## References

| 1 | Tkatchenko and M. | Schettler <i>Ph</i> | ivsical Review | Letters 2009 | <b>102</b> 073005 |
|---|-------------------|---------------------|----------------|--------------|-------------------|
|   |                   |                     |                |              |                   |