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Experimental Section

The synthesis of Ni-Fe-P/NFo electrode material: The chemicals used in the
synthesis process are all analytical grades and added without further treatment. A batch
of nickel foam was cut to the size of 1x3 cm?, then soaked in acetone for a certain time,
and washed with deionized water. The nickel foam was soaked in 3 M HCI for 30 min
to remove the oxide layer, and then washed with deionized water and anhydrous
ethanol for a period of time. The nickel foam was dried in a vacuum oven to avoid
further oxidation. The electroless deposition of Ni-Fe-P/NF alloy is carried out in an
alkaline solution containing 7.5 g L' nickel sulfate, 17.5 g L"! ammonium ferrous
sulfate, 40 g L' sodium hypophosphite monohydrate as a reducing agent, 10g L’!
ammonium fluoride as a buffering agent and 20 g L™! trisodium citrate as a complexing
agent. The pH of the electroless plating solution was adjusted and controlled to 9 with
ammonia water. The temperature of the electroless plating solution was raised to 90 °C
and the deposition time was controlled to be 1 h. After the electroless plating, the

Ni-Fe-P/NFy electrode material was rinsed with deionized water for later use.
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The synthesis of Ni-Fe-P/NFx electrode material: The prepared Ni-Fe-P/NFy
electrode material was immersed in 1.5 M HCI for x seconds with a copper wire
suspension to obtain a Ni-Fe-P/NFx electrode material. The Ni-Fe-P/NFx electrode
material was then ultrasonically cleaned several times with deionized water. Then, it

was placed in a drying oven set at 60 °C for 8 h.

Structural Characterization: The morphologies and microstructure of the
catalysts were characterized using field-emission scanning electron microscopy
(FE-SEM, JEOL, and JSM-6700F). The crystal structure of the Ni-Fe-P/NF3¢ is
characterized by a X-ray diffraction (XRD, Rigaku D-max-A with Cu k radiation,
A=1.54178 A) from 10° to 90°. The atomic ratio of Ni, Fe, and P in the coatings was
analyzed by energy dispersive X-ray spectroscopy (EDS). The surface chemical states
of the catalysts were analyzed by X-ray photoelectron spectroscopy (XPS) using

Perkin-Elmer PHI 550 spectrometer, with Al Ka (1486.6 eV) as an X-ray source.

Electrochemical tests: All electrochemical tests were carried out at room
temperature. The OER and HER electrochemical activities were tested in a
three-electrode configuration on a cs multichannel electrochemical workstation
(CorrTest, Wuhan, China), and the overall water splitting was investigated in a
two-electrode system. An Hg/HgO electrode was used as a reference electrode and a Pt
electrode was used as a counter electrode. All potentials were calibrated to a reversible
hydrogen electrode (RHE) in 1 M KOH according to the Nernst equation. The obtained

Ni-Fe-P/NF3o electrode was custom-made to 1 cm x 1 ¢cm and used directly as a



working electrode for electrochemical testing. Linear-sweep voltammetry, which
corrected regarding iR compensation, was carried out at a scan rate of 1 mV s’!. The
linear sweep voltammetry (LSV) curves of each sample was measured five times, and
the final sweep was always used for analysis. A series cyclic voltammetry (CV)
measurement were performed at various scan rates (0.010, 0.012, 0.014, 0.016, 0.018 V
s™)). Electrochemical impedance spectra (EIS) were measured in the frequency range of
0.01 HZ to 105 HZ by applying an AC voltage of 5 mV. Long-term durability test of
HER and OER was determined by chronoamperometry and chronopotentiometry,

respectively.
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Figure S1. Energy-dispersive X-ray spectrum (EDS) of a) Ni-Fe-P/NFo and b) Ni-Fe-P/NFs.
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Figure S2. Chronopotentiometric curve of HER at 20 mA cm for Ni-Fe-P/NFso.
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Figure S3. CV curves of a) Ni-Fe-P/NF, b) Ni-Fe-P/NF3,

and c¢) Ni-Fe-P/NFss at different scan rate.



Table S1. The Fe/Ni atom ratio of Ni-Fe-P/NFy and Ni-Fe-P/NF3.

Sample Ni (atm %) | Fe (atm %) | P (atm %) | O (atm %) | Fe/Ni ratio
Ni-Fe-P/NFo 61.02 7.95 11.56 19.46 1/7
Ni-Fe-P/NF3g 45.65 2.48 15.33 36.55 1/14
Table S2. Summary of various electrocatalysts for OER.

Catalyst Electrolyte  Overpotential at 10 mA cm?(mV) Reference

Ni-Fe-P/NF3g 1 M KOH 229 This work
np-(Nios7Feo33)sPs 1 M KOH 245 Ref. S1
CosMo1.00 NSs@NF 1 M KOH 270 Ref. S2

NiCoP 1 M KOH 280 Ref. S3

Co-Ni-B@NF 1 M KOH 313 Ref. S4

CoS-Co(OH) 2

1 M KOH 380 Ref. S5
@aMoS 2+«

CoFePi 1 M KOH 277 Ref. S6
Co-Ni(1:1)/PI-CNT 1 M KOH 365 Ref. S7
NiCoFe-LDH/CFC 1 M KOH 280 Ref. S8
Co-MoS2/BCCF-21 1 M KOH 260 Ref. S9




Table S3. Summary of various electrocatalysts for overall water splitting.

Water splitting Voltage at 10 mA

Catalyst Electrolyte Reference
y vt cm? (V)

Ni-Fe-P/NF30 1 M KOH 1.58 This work
np-(Nioe7Feo33)4Ps 1 M KOH 1.62 Ref. S1
CosMo1.0ONSs@NF//

1 M KOH 1.68 Ref. S2
CosMo1.0P NSs@NF
Co-Ni-B@NF 1 M KOH 1.72 Ref. S4
CuCoO-NWs 1 M KOH 1.61 Ref. S10
NisFe LDH@NF 1 M KOH 1.59 Ref. S11
Se-(NiCo0)S/OH 1 M KOH 1.60 Ref. S12
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