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Experimental Section 

The synthesis of Ni-Fe-P/NF0 electrode material: The chemicals used in the 

synthesis process are all analytical grades and added without further treatment. A batch 

of nickel foam was cut to the size of 1×3 cm2, then soaked in acetone for a certain time, 

and washed with deionized water. The nickel foam was soaked in 3 M HCl for 30 min 

to remove the oxide layer, and then washed with deionized water and anhydrous 

ethanol for a period of time. The nickel foam was dried in a vacuum oven to avoid 

further oxidation. The electroless deposition of Ni-Fe-P/NF0 alloy is carried out in an 

alkaline solution containing 7.5 g L-1 nickel sulfate, 17.5 g L-1 ammonium ferrous 

sulfate, 40 g L-1 sodium hypophosphite monohydrate as a reducing agent, 10g L-1 

ammonium fluoride as a buffering agent and 20 g L-1 trisodium citrate as a complexing 

agent. The pH of the electroless plating solution was adjusted and controlled to 9 with 

ammonia water.  The temperature of the electroless plating solution was raised to 90 ℃ 

and the deposition time was controlled to be 1 h. After the electroless plating, the 

Ni-Fe-P/NF0 electrode material was rinsed with deionized water for later use. 
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The synthesis of Ni-Fe-P/NFx electrode material: The prepared Ni-Fe-P/NF0 

electrode material was immersed in 1.5 M HCl for x seconds with a copper wire 

suspension to obtain a Ni-Fe-P/NFx electrode material. The Ni-Fe-P/NFx electrode 

material was then ultrasonically cleaned several times with deionized water. Then, it 

was placed in a drying oven set at 60 ℃ for 8 h. 

Structural Characterization: The morphologies and microstructure of the 

catalysts were characterized using field-emission scanning electron microscopy 

(FE-SEM, JEOL, and JSM-6700F). The crystal structure of the Ni-Fe-P/NF30 is 

characterized by a X-ray diffraction (XRD, Rigaku D-max-A with Cu k radiation, 

λ=1.54178 Å) from 10° to 90°. The atomic ratio of Ni, Fe, and P in the coatings was 

analyzed by energy dispersive X-ray spectroscopy (EDS). The surface chemical states 

of the catalysts were analyzed by X-ray photoelectron spectroscopy (XPS) using 

Perkin-Elmer PHI 550 spectrometer, with Al Ka (1486.6 eV) as an X-ray source. 

Electrochemical tests: All electrochemical tests were carried out at room 

temperature. The OER and HER electrochemical activities were tested in a 

three-electrode configuration on a cs multichannel electrochemical workstation 

(CorrTest, Wuhan, China), and the overall water splitting was investigated in a 

two-electrode system. An Hg/HgO electrode was used as a reference electrode and a Pt 

electrode was used as a counter electrode. All potentials were calibrated to a reversible 

hydrogen electrode (RHE) in 1 M KOH according to the Nernst equation. The obtained 

Ni-Fe-P/NF30 electrode was custom-made to 1 cm x 1 cm and used directly as a 



working electrode for electrochemical testing. Linear-sweep voltammetry, which 

corrected regarding iR compensation, was carried out at a scan rate of 1 mV s-1. The 

linear sweep voltammetry (LSV) curves of each sample was measured five times, and 

the final sweep was always used for analysis. A series cyclic voltammetry (CV) 

measurement were performed at various scan rates (0.010, 0.012, 0.014, 0.016, 0.018 V 

s-1). Electrochemical impedance spectra (EIS) were measured in the frequency range of 

0.01 HZ to 105 HZ by applying an AC voltage of 5 mV. Long-term durability test of 

HER and OER was determined by chronoamperometry and chronopotentiometry, 

respectively.  

 

 

 

Figure S1. Energy-dispersive X-ray spectrum (EDS) of a) Ni-Fe-P/NF0 and b) Ni-Fe-P/NF30. 



 

Figure S2. Chronopotentiometric curve of HER at 20 mA cm-2 for Ni-Fe-P/NF30. 

 

 

 

Figure S3. CV curves of a) Ni-Fe-P/NF0, b) Ni-Fe-P/NF30,  

and c) Ni-Fe-P/NF45 at different scan rate. 



 

Table S1. The Fe/Ni atom ratio of Ni-Fe-P/NF0 and Ni-Fe-P/NF30. 

Sample Ni (atm %) Fe (atm %) P (atm %) O (atm %) Fe/Ni ratio 

Ni-Fe-P/NF0 61.02 7.95 11.56 19.46 1/7 

Ni-Fe-P/NF30 45.65 2.48 15.33 36.55 1/14 

 

 

 

Table S2. Summary of various electrocatalysts for OER. 

Catalyst Electrolyte Overpotential at 10 mA cm-2 (mV) Reference 

Ni-Fe-P/NF30 1 M KOH 229 This work 

np-(Ni 0.67 Fe 0.33 ) 4 P 5 1 M KOH 245 Ref. S1 

Co5Mo1.0O NSs@NF 1 M KOH 270 Ref. S2 

NiCoP 1 M KOH 280 Ref. S3 

Co-Ni-B@NF 1 M KOH 313 Ref. S4 

CoS-Co(OH) 2 

@aMoS 2+x 
1 M KOH 380 Ref. S5 

CoFePi 1 M KOH 277 Ref. S6 

Co-Ni(1:1)/PI-CNT 1 M KOH 365 Ref. S7 

NiCoFe-LDH/CFC 1 M KOH 280 Ref. S8 

Co-MoS 2 /BCCF-21 1 M KOH 260 Ref. S9 

 

 

  



Table S3. Summary of various electrocatalysts for overall water splitting. 

Catalyst Electrolyte 
Water splitting Voltage at 10 mA 

cm-2 (V) 
Reference 

Ni-Fe-P/NF30 1 M KOH 1.58 This work 

np-(Ni 0.67 Fe 0.33 ) 4 P 5 1 M KOH 1.62 Ref. S1 

Co5Mo1.0ONSs@NF// 

Co5Mo1.0P NSs@NF 
1 M KOH 1.68 Ref. S2 

Co-Ni-B@NF 1 M KOH 1.72 Ref. S4 

CuCoO-NWs 1 M KOH 1.61 Ref. S10 

Ni 5 Fe LDH@NF 1 M KOH 1.59 Ref. S11 

Se-(NiCo)S/OH 1 M KOH 1.60 Ref. S12 
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