Supporting Information

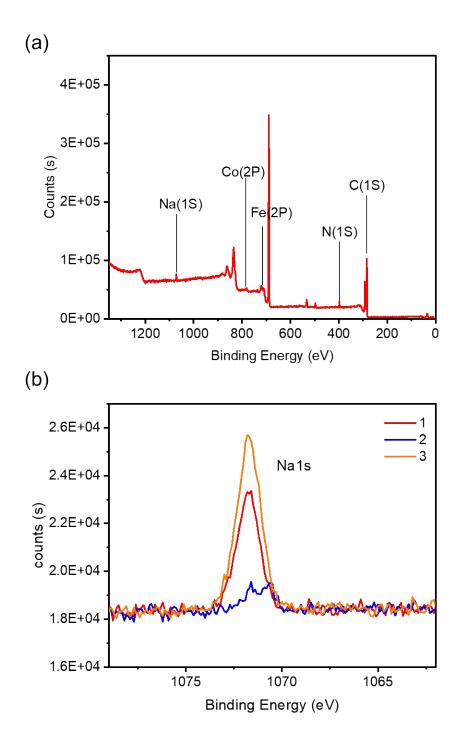
Electrolyte regulation enhances the stability of Prussian blue analogues in aqueous Na-ion storage

Tielei Shao,^a Chang Li,^a Chunyi Liu,^a Wenjun Deng,^a Weijian Wang,^a Mianqi Xue^b and Rui Li ^{a*}

^aSchool of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen 518055, China. Email: lirui@pkusz.edu.cn

^bTechnical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.

Calculation of Na⁺ ion diffusivity


The Na⁺ ion diffusivity of CoHCF has been calculated based on the result of electrochemical impedance spectroscopy (EIS) (Figure 2d), the equivalent electric circuit is shown in the insets, in which R_{SEI} and R_{CT} severally represent the solid electrolyte interface resistance and charge-transfer resistance, and Z_W represents the Warburg impedance. The Na⁺ ion diffusivity of the CoHCF can be calculated with following formula given as follow,

$$D = \frac{R^2 T^2}{2A^2 n^4 F^4 C^2 \sigma^2} \tag{3}$$

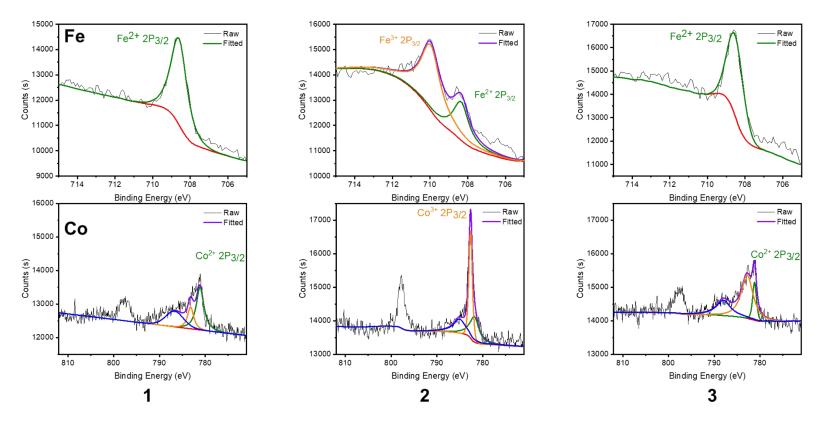

where R is gas constant (8.314 JK⁻¹ mol⁻¹), T is the room temperature (298 K), A is the surface area of the electrode (3.85 × 10⁻⁵ m²), n is the number of the electrons transferred in the electronic reaction (n = 2 in this work), F is the Faraday constant (96485 C mol⁻¹), C is the concentration of Na⁺ in CoHCF electrode, and $^\sigma$ is the slope of the line Z'- ω -1/2 (as shown in the insets of Figure 2d, the $^\sigma$ values is 40.7), Hence, the calculated D Na of CoHCF is 1.72 × 10⁻¹⁴ cm² s⁻¹.

Table S1 Elemental contents (wt%) of as-prepared Na₂CoFe(CN)₆ material

	Na	Со	Fe	С	N	Н
CoHCF	10.44	17.79	14.30	19.32	22.63	1.74

Figure S1 XPS spectra of (a) 1 initial state, and (b) Na 1s in three states (1. initial state, 2. fully charged to 1 V, 3. fully discharged to 0 V).

Figure S2 XPS spectra of Fe 2p and Co 2p in three states (1. initial state, 2. fully charged to 1 V, 3. fully discharged to 0 V).

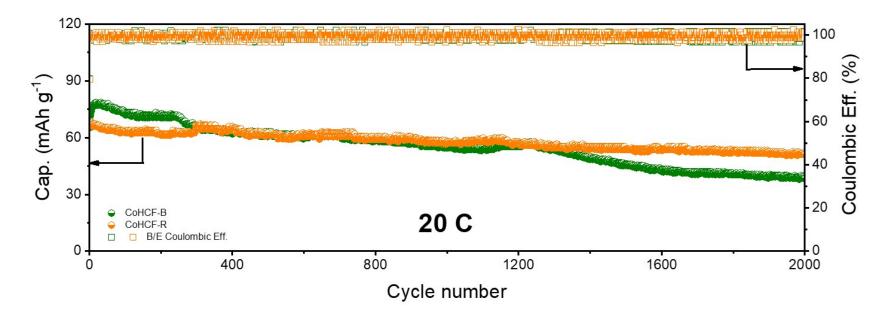


Figure S3 Cycle performances of CoHCF-B and CoHCF-R at a current density of 20 C,1 C=120 mA g⁻¹.

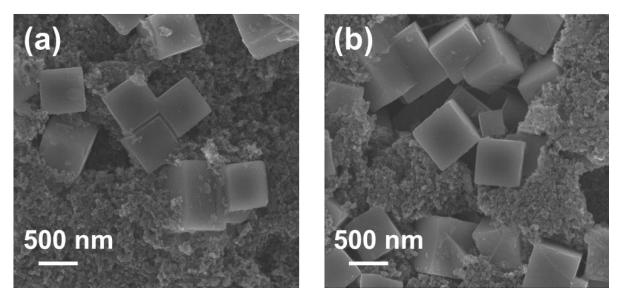
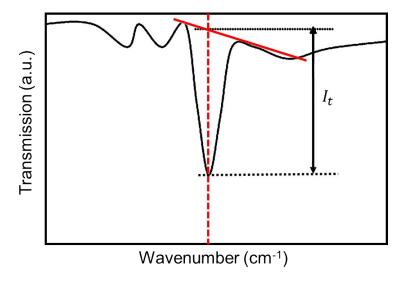



Figure S4 SEM images of the CoHCF-B (a) before (b) after 100cycles.

Figure S5 The specific value of I_t to calculate the relative intensity.