Electronic Supplementary Information

Ultrathin MoS₂ nanosheets homogenously embedded in N, O codoped carbon matrix for high-performance lithium and sodium storage

Meisheng Han, Zijia Lin, and Jie Yu*

Shenzhen Engineering Lab for Supercapacitor Materials, Shenzhen Key Laboratory for Advanced Materials, Department of Material Science and Engineering, Harbin Institute of Technology, Shenzhen, University Town, Shenzhen 518055, China *E-mail: jyu@hit.edu.cn

Fig. S1 Schematic diagram of synthesizing apparatus

The vessel consists of molybdenum vessel, copper ring, and molybdenum screw. The molybdenum vessel consists of two parts, namely upper lid and lower container with a volume of 5 ml. The copper ring plays a role of sealing. The molybdenum screws are for connecting and fastening of the lid and container.

Fig. S2 SEM images of pure MoS₂(a,b) and AT (c,d).

	0	1	1		
Samples	Mo (at%)	S (at%)	C (at%)	N (at%)	O (at%)
MoS ₂	29.18	57.66	10.04		3.12
MoS ₂ /C -I	2.12	4.09	72.19	13.41	8.19
MoS ₂ /C -II	3.08	5.99	71.43	12.81	6.69
MoS ₂ /C-III	3.63	7.08	70.56	12.20	6.53

Table S1 Fitting results of XPS spectra of all the samples.

The atomic ratio of S and Mo elements in the MoS₂, MoS₂/C–I, MoS₂/C–II and MoS₂/C-III is 1.98, 1.93, 1.94 and 1.95, respectively. The doping amount of N and O elements in the carbon materials should be calculated by N (at%)/(C (at%)+N (at%)+O (at%))*100% and O (at%)/(C (at%)+N (at%)+O (at%))*100%, respectively. Therefore, the doping amount of N and O elements in the carbon materials of MoS₂/C–I is 14.30 at% and 8.73 at%, respectively. The doping amount of N and O elements in the carbon materials of MoS₂/C–II is 14.09 at% and 7.36 at%, respectively. The doping amount of N and O elements in the carbon materials of MoS₂/C–II is 13.67 at% and 7.31 at%, respectively.

Table S2 The elemental analysis results of the obtained samples.

Samples	C (wt%)	N (wt%)	O (wt%)	MoS ₂ (wt%)
MoS ₂ /C-I	31.3	5.6	3.3	59.8
MoS ₂ /C-II	19.1	3.5	1.7	75.7
MoS ₂ /C-III	10.2	1.5	0.8	87.5

Table S3 The charge capacity (mAh g⁻¹) and charge capacity retention (%) after 100 cycles of the obtained samples.

Samples	First capacity	Final capacity	Capacity retention
MoS ₂	663.1	260.3	39.3
MoS ₂ /C-I	812.3	815.8	100.4
MoS ₂ /C-II	909.3	946.3	104.1
MoS ₂ /C-III	768.7	649.9	84.6

Fig. S3 CE of MoS₂/C-II nanocomposite at 0.1 C during 100 cycles.

Fig. S4 SEM images of the electrode of the MoS_2/C nanocomposite as anode for LIBs after 2700 cycles.

Fig. S5 (a) Charge/discharge curves and (b) Cycling curve of $MoS_2/C/LiCoO_2$ full cell at 1 C.

Table S4 Performance comparison of full cells at high current density. Commercial graphite anode, LiCoO₂ cathode, LiFePO₄ cathode, polyvinylidene fluoride binder, and acetylene black conductive additive were used to assemble the full cells. A_{DC}-anode discharge capacity (mAh g⁻¹), C_{DC}-cathode discharge capacity (mAh g⁻¹), C_R-capacity retention (%), J-current density (C), N_C-cycle number, NA-not available.

Anode/cathode	Add	C _{DC}	C_R	J	Nc	References
MoS ₂ /C/LiCoO ₂	632.8	112.7	90.4	1	200	This work
Graphite/LiCoO ₂	NA	26.0	21.0	1	200	Adv. Energy Mater., 2013,
						3 , 213–219
Graphite/LiCoO ₂	274.0	NA	85.6	0.5	100	J. Power Sources, 2010,
						195 , 2368–2371
Graphite/LiFePO ₄	224.0	98.0	70.0	1	200	J. Power Sources, 2011,
						196 , 7707–7714

Samples	C _C	C _R	M_{L}	J	N _C	References
MoS ₂ /C	946.2	104.3	1.20	0.067	100	This work
MoS ₂ /C	702.3	115.4	1.20	1.34	2700	This work
MoS ₂ /C	234.7	NA	1.20	13.4	NA	This work
MoS ₂ /	509	91.88	NA	0.1	100	Angew. Chem. Int.
Mo ₂ TiC ₂ T _x						<i>Ed.</i> , 2018, 57 , 1846-1850.
MoS ₂ / Mo ₂ TiC ₂ T _x	182	NA	NA	2	NA	Angew. Chem. Int. Ed., 2018, 57 , 1846- 1850.
CNT@MoS2@C	905	NA	1.00	1	500	<i>Adv. Energy Mater.,</i> 2018, 8 , 1700174.
RGO/MoS ₂	892	93.89	0.41	2	400	<i>Energy Storage</i> <i>Mater.</i> , 2018, 10 , 282-290.
RGO/MoS ₂	723	NA	0.41	10	NA	<i>Energy Storage</i> <i>Mater.</i> , 2018, 10 , 282-290.
Graphene@MoS ₂ nanotubes	830	96.5	1.10	0.4	120	<i>Energy Storage Mater.</i> , 2017, 9 , 188-194.
Graphene@MoS ₂ nanotubes	502	NA	1.10	2	NA	<i>Energy Storage</i> <i>Mater.</i> , 2017, 9 , 188- 194.
MoS ₂ @C	993	NA	NA	1	200	ACS Nano, 2017, 11, 8429-8436.
MoS ₂ @C	595	NA	NA	10	NA	ACS Nano, 2017, 11, 8429-8436.
TNO@MSHRs	740	91.58	1.10	1	200	ACS Nano, 2017, 11, 1026-1033.
TNO@MSHRs	611	NA	1.10	4	NA	ACS Nano, 2017, 11, 1026-1033.
Carbon@MoS ₂	740	NA	NA	0.1	100	<i>Adv. Mater.</i> , 2016, 28 , 10175-10181.
MoS ₂ nanospheres	1100	86.61	NA	0.5	100	Angew. Chem. Int. Ed., 2016, 128 , 7549- 7552.
NG-MoS ₂	980	NA	2.00	1	400	ACS Nano, 2016, 10, 8526-8535.
C@MoS ₂ nanoboxes	1000	NA	1.00	0.4	200	Angew. Chem. Int. Ed., 2016, 55 , 12783- 12788
MoS ₂ /G	907	83.98	NA	1	400	Angew. Chem. Int. Ed., 2015, 54 , 7395- 7398.

Table S5 Electrochemical performances of MoS₂-based materials for LIB anodes in open reports. C_C-charge capacity (mAh g⁻¹), C_R-capacity retention (%), M_L-mass loading (mg cm⁻²), J-current density (A g⁻¹), N_C-cycle number, NA-not available.

MoS ₂ nanospheres	1009.2	80.74	1.00	0.5	500	ACS Nano, 2015, 9,
						12464-12472.
3DFL-	709	95.2	NA	2	520	ACS Nano, 2015, 9,
MoS ₂ @PCNNs						3837-3848.
NTL-MoS ₂ /G	1033	91.66	NA	0.1	220	Nano Energy, 2014,
						10 , 144-152.
MoS ₂ /GS films	907	NA	NA	1	1000	Nano Energy, 2014,
						8 , 183-195.

Table S6 Electrochemical performances of MoS_2 -based materials for SIB anodes in open reports. C_C-charge capacity (mAh g⁻¹), C_R-capacity retention (%), M_L-mass loading (mg cm⁻²), J-current density (A g⁻¹), N_C-cycle number, NA-not available.

Samples	C _C	C _R	$M_{\rm L}$	J	N _C	References
MoS ₂ /C	419.5	91.5	1.20	0.067	100	This work
MoS ₂ /C	187.9	NA	1.20	3.35	NA	This work
M-c MoS ₂	401	89.1	NA	0.2	150	<i>Nano Energy</i> , 2018, 51 , 546.
RGO/MoS ₂	312	71.3	0.41	1	600	<i>ACS Nano</i> , 2017, 11 , 8429.
MoS ₂ /graphene	313	71.95	NA	0.05	200	<i>Adv. Funct. Mater.</i> , 2017, 27 , 1702998.
MoS2@C-CMC	286	80.56	NA	0.08	100	<i>Adv. Energy Mater.</i> , 2016, 6, 1502161.
MoS ₂ nanosheet	330	33.67	1.20	0.08	100	<i>Adv. Energy Mater.</i> , 2015, 5, 1401205.

Table S7 Rate capability of different kinds of materials for LIB anode in open reports. C_{C} -charge capacity (mAh g⁻¹), J-current density (C or A g⁻¹). 1 C indicates the current density when the anodes are charged to the theoretical capacity in one hour.

Samples	Cc	J	References
MoS ₂ /C	234.7	20 C	This work
Sn hybrid composite	150	20 C	Nano Lett., 2018, 18, 467-474.
$Nb_{18}W_{16}O_{93}$	70	100 C	Nature, 2018, 559, 556-563.
Si-nanolayer-embedded	222.3	5 C	<i>Nat. Energy</i> , 2016, 1, 16113.
graphite/carbon hybrids			
SiO _x /SiO _y nanomembrane	4	10 A g ⁻¹	Adv. Mater., 2014, 26, 4527-4532.
SnO ₂ NC@N-RGO	417	20 A g ⁻¹	<i>Adv. Mater.</i> , 2013, 25, 2152-2157.
Si nanotube	540	20 C	Nat. Nanotechnol., 2012, 7, 310-315.
Li ₄ Ti ₅ O ₁₂ nanowire	119.4	30 C	Adv. Mater., 2012, 24, 6502-6506.

Fig. S6 (a) XRD pattern and (b) Raman spectrum of sample obtained by heating pure AT at 360 °C in the sealed vessel.

From XRD pattern, the sample shows the peaks of (002), (110), (103) and (110) crystal plane of 2H-MoS₂. From the Raman spectrum, the sample shows the peaks of the E^{1}_{2g} (in-plane vibration) and A_{1g} (out of plane vibration) modes of 2H-MoS₂. The above results indicate MoS₂ has been obtained at 360 °C, namely AT can be fully changed into MoS₂ at 360 °C.

Description of safety issues in the preparation process of samples

It is necessary to discuss the safety issues during sample preparation using the sealed vessels as high pressure is generated in the process. In order to avoid too high pressure we adhere to three rules. First, the vessel volume could not be too big. Second, the amount of the reagents loaded could not be too large. Third, the flammable reagents could not be used. In this work, the vessel volume is 5 ml and the reagent amount loaded is 1.5 g. The reagents of AT and DMF is not flammable, which decompose and react gradually when heating. Presently, we have no tools to measure the pressure in the vessel. But we could estimate the pressure roughly using the ideal gas equation (PV=nRT). As an example, we calculated the pressure when loading the mixture of 0.5 g AT and 1 g DMF. According to idea gas state equation, when T is 426 K (the boiling point of DMF), the pressure is calculated to be 9.1 MPa if the DMF was totally evaporated. Above 633 K, DMF starts to gradually decompose into gaseous free radicals mainly OHCN:, OHC and CH3 etc. (Carbon, 2004, 42, 2625-2633.) Therefore, the pressure at 633 K generated from DMF is 40.0 MPa. Subsequently, with further increasing temperature these gaseous free radicals start to convert into solid carbon and H₂. If only considering the pressure generated by H₂, the pressure will reach 137.9 MPa at 873 K. Simultaneously, the AT decomposes into NH₃ and H₂S at 360 °C. For 0.5 g AT, the pressure generated by the NH₃ and H₂S is 8.0 MPa at 633 K and 11.0 Mpa at 873 K. So the total pressure at 873 K is 148.9 MPa. We used 4 Mo screws with diameter of 6 mm. These 4 screws can support a force of 6.78×10⁴ N at 293 K (*Nature Mater.*, 2013, **12**, 344-350). Based on the previous research on the influence of temperature on the tensile properties, the tensile strength would decrease about 37% from 293 K to 873 K. (Acta Mater., 2013, 61, 5743-5755). Therefore, the 4 screws can support a force of about 4.27×10⁴ N at 873 K, which is higher than the force generated by the internal pressure in the vessel. If the pressure is

too high, the screws will deform and elongate because Mo is plastic, resulting in the leakage of the gases. So for this reaction vessel the operation is safe. Up to now, we have not encountered safety problems. We believe that high productivity could be achieved by appropriately designing special instrument.