Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. Electronicasispolementary Materialy (ESI) for isournal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2018

## **Convenient Preparation of CsSnI<sub>3</sub> Quantum Dots, Excellent**

## **Stability, and the Highest Performance of Lead-Free**

## **Inorganic Perovskite Solar Cells So Far**

Yangyang Wang<sup>a</sup>, Jin Tu<sup>b</sup>, Tianhao Li<sup>a</sup>, Cheng Tao<sup>a</sup>, Xianyu Deng<sup>a</sup>\* and Zhen Li<sup>b, c</sup>\*

<sup>a</sup> Shenzhen Key Laboratory of Advanced Materials, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, 518055, China. Email: xydeng@hit.edu.cn

<sup>b</sup> Department of Chemistry, Wuhan University, Wuhan 430072, China. Email: <u>lizhen@whu.edu.cn</u>

<sup>c</sup> Institute of Molecular Aggregation Science, Tianjin University, Tianjin 30072, China



Fig. S1. UV-Vis absorption spectra of the  $CsSnI_3$  QDs film and  $CsSnI_3$  QDs solution with 4 *vol*% ASA after a heat treatment.



Fig. S2. IR Spectrum of the CsSnI<sub>3</sub> QDs film from the solution with and without TPPi



**Fig. S3.** The SEM images of the  $CsSnI_3$  films prepared by a spin-coating method from the solution III with different ASA concentrations: (a) 0 *vol.*%, (b) 2 *vol.*%, (c) 4 *vol.*% and (d) 6 *vol.*%.



Snl<sub>2</sub> solution

**Fig. S4.** Images of the  $SnI_2$  solution with or without TPPi dissolved in the DMF:DMSO solvent mixture solvent. The concentration of  $SnI_2$  and TPPi were 0.5 M and 4 *vol.*%, respectively.



**Fig. S5.** Raman spectra of CsSnI<sub>3</sub> solutions containing different TPPi concentrations: 0 *vol.*%, 2 *vol.*%, 4 *vol.*% and 6 *vol.*%.



Fig. S6. Images of color comparisons of different solutions with parallel processes.



**Figure S7.** XPS spectra of the Sn (3d) bands on the Sn-based perovskite surface with different X-ray irradiation times (30 min each time).



**Fig. S8.** The crystal structure of the  $CsSnI_3$  film with an orthorhombic (Pnam) structure prepared from the solution shown in Figure 1a: (a) the film containing the doping carrier concentration from the  $CsSnI_3$  solution without TPPi and (b) the film not containing the doping carrier concentration from the  $CsSnI_3$  solution with TPPi.



Fig. S9. The high frequency part (is associated with  $R_s$ ) of EIS plots for of the ITO/PEDOT:PSS/CsSnI<sub>3</sub> (from different precursor solutions)/PCBM/Ag devices.

| Tab. | <b>S1</b> . | The | character | fitting | values | of PL | decay | spectra | shown | in F | igure : | 5c. |
|------|-------------|-----|-----------|---------|--------|-------|-------|---------|-------|------|---------|-----|
|      |             |     |           | 0       |        |       | 2     | 1       |       |      | 0       |     |

| CsSnI <sub>3</sub> films         | $\tau_1$ (ns) | $\tau_2$ (ns) |
|----------------------------------|---------------|---------------|
| non-QDs film From solution I     | 0.20          | 0.22          |
| non-QDs From solution II         | 0.31          | 0.67          |
| QDs based film From solution III | 1.38          | 7.01          |

**Tab. S2.** The character values of Nyquist plots of the ITO/PEDOT:PSS/CsSnI<sub>3</sub> (from different precursor solutions)/PCBM/Ag devices shown in Figure 5d.

| CsSnI <sub>3</sub> films         | $\mathbf{R}_{\mathrm{s}}\left(\Omega ight)$ | $\mathbf{R}_{\mathrm{rec}}\left(\Omega ight)$ |
|----------------------------------|---------------------------------------------|-----------------------------------------------|
| non-QDs film From solution I     | 16.33                                       | 37.58                                         |
| non-QDs From solution II         | 15.66                                       | 147.88                                        |
| QDs based film From solution III | 14.79                                       | 283.12                                        |