Convenient Preparation of CsSnI_{3} Quantum Dots, Excellent

 Stability, and the Highest Performance of Lead-Free
Inorganic Perovskite Solar Cells So Far

Yangyang Wang ${ }^{\text {a }}$, Jin Tu^{b}, Tianhao Li^{a}, Cheng Tao ${ }^{\text {a }}$, Xianyu Deng ${ }^{\mathrm{a} *}$ and Zhen $\mathrm{Li}^{\mathrm{b}, \mathrm{c}_{*}}$
${ }^{\text {a }}$ Shenzhen Key Laboratory of Advanced Materials, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, 518055, China. Email: xydeng@hit.edu.cn
${ }^{\text {b }}$ Department of Chemistry, Wuhan University, Wuhan 430072, China. Email: lizhen@whu.edu.cn
${ }^{c}$ Institute of Molecular Aggregation Science, Tianjin University, Tianjin 30072, China

Fig. S1. UV-Vis absorption spectra of the CsSnI_{3} QDs film and CsSnI_{3} QDs solution with 4 vol\% ASA after a heat treatment.

Fig. S2. IR Spectrum of the CsSnI_{3} QDs film from the solution with and without TPPi

Fig. S3. The SEM images of the CsSnI_{3} films prepared by a spin-coating method from the solution III with different ASA concentrations: (a) $0 \mathrm{vol} . \%$, (b) $2 \mathrm{vol} . \%$, (c) 4 vol. \% and (d) 6 vol. \%.

Snl_{2} solution

Fig. S4. Images of the SnI_{2} solution with or without TPPi dissolved in the DMF:DMSO solvent mixture solvent. The concentration of SnI_{2} and TPPi were 0.5 M and $4 \mathrm{vol} . \%$, respectively.

Fig. S5. Raman spectra of CsSnI_{3} solutions containing different TPPi concentrations: $0 \mathrm{vol} . \%, 2 \mathrm{vol} . \%, 4 \mathrm{vol} . \%$ and $6 \mathrm{vol} . \%$.

Fig. S6. Images of color comparisons of different solutions with parallel processes.

Figure S7. XPS spectra of the Sn (3d) bands on the Sn-based perovskite surface with different X-ray irradiation times (30 min each time).

Fig. S8. The crystal structure of the CsSnI_{3} film with an orthorhombic (Pnam) structure prepared from the solution shown in Figure 1a: (a) the film containing the doping carrier concentration from the CsSnI_{3} solution without TPPi and (b) the film not containing the doping carrier concentration from the CsSnI_{3} solution with TPPi.

Fig. S9. The high frequency part (is associated with R_{s}) of EIS plots for of the ITO/PEDOT:PSS/ CsSnI_{3} (from different precursor solutions)/PCBM/Ag devices.

Tab. S1. The character fitting values of PL decay spectra shown in Figure 5c.

CsSnI $_{3}$ films	$\boldsymbol{\tau}_{\mathbf{1}}(\mathbf{n s})$	$\boldsymbol{\tau}_{\mathbf{2}}(\mathbf{n s})$
non-QDs film From solution I	0.20	0.22
non-QDs From solution II	0.31	0.67
QDs based film From solution III	1.38	7.01

Tab. S2. The character values of Nyquist plots of the ITO/PEDOT:PSS/CsSnI ${ }_{3}$ (from different precursor solutions)/PCBM/Ag devices shown in Figure 5d.

CsSnI $_{\mathbf{3}}$ films	$\mathbf{R}_{\mathbf{s}}(\boldsymbol{\Omega})$	$\mathbf{R}_{\text {rec }}(\boldsymbol{\Omega})$
non-QDs film From solution I	16.33	37.58
non-QDs From solution II	15.66	147.88
QDs based film From solution III	14.79	283.12

