Supporting Information (SI)

Achieving high energy density for lithium-ion battery anodes by Si/C

nanostructures design

Xingshuai Lv, Wei Wei*, Baibiao Huang and Ying Dai*

School of Physics, State Key Laboratory of Crystal Materials, Shandong University,

250100 Jinan, China

* Corresponding authors

weiw@sdu.edu.cn (W. Wei)

daiy60@sdu.edu.cn (Y. Dai)

Contents

- 1. Geometric structures and possible adsorption sites of (a) g-SiC₂ and (b) g-SiC₃.
- Three high-symmetry Li adsorption sites on g-SiC₂ and corresponding charge difference.
- Three high-symmetry Li adsorption sites on *g*-SiC₃ and corresponding charge difference.
- 4. The most stable configurations at different *n* (n = 1, 2, 3, 4 and 5) values of $Li_nSi_2C_4$.
- 5. The most stable configurations at different n (n = 2, 4, 6, 8 and 10) values of $Li_nSi_2C_6$.
- 6. Thermal stability of $Li_5Si_2C_4$ and $Li_{10}Si_2C_6$.
- 7. PDOS of Li adsorption on graphene, g-SiC₂ and g-SiC₃.
- 8. Band structures of different lithiated *g*-SiC₂.
- 9. Band structures of different lithiated *g*-SiC₃.

Table S1 Comparison of lattice constants of g-SiC₂ and g-SiC₃ with previous theoretical results. "–" represents that there is no corresponding result for g-SiC₂ or g-SiC₃. The unit is Å.

	This work	Ref. 35	Ref. 36
g-SiC ₂	5.02	5.019	—
g-SiC ₃	5.62	_	5.633

Table S2 Adsorption energies on various possible adsorption sites. The most stable adsorption sites are highlighted in red. For C1 sites of g-SiC₂ and g-SiC₃, Li atoms will move to C2 and H1 sites after the optimization, respectively. The unit is eV.

	C1	C2	Si	Н	H1	H2
g-SiC ₂	-1.71 (C2)	-1.71	-1.25	-2.14	_	_
g-SiC ₃	-2.24 (H1)	_	-1.54	_	-2.24	-1.95

Table S3 Adsorption energies at different Li coverages. The unit is eV.

	1×1	2×1	2×2	3×2	3×3
g-SiC ₂	-2.14	-2.21	-2.25	-2.27	-2.28
g-SiC ₃	-2.24	-2.28	-2.33	-2.35	-2.35

Figure S1 Schematic representations of the (2×2) supercells of (a) g-SiC₂ and (b) g-SiC₃. Small (Brown) and large (green) balls represent carbon and Si atoms,

respectively.

Figure S2 (a) Top and (b) side views of three high-symmetry Li adsorption sites (C2, Si and H sites) on *g*-SiC₂. (c) Corresponding difference charge density. The yellow and blue areas represent electron gains and losses. The difference charge density ($\Delta \rho$) is calculated by $\Delta \rho = \rho_{total} - \rho_{SG} - \rho_{Li}$, where ρ_{total} , ρ_{SG} and ρ_{Li} are the total charge of the system, siligraphene and lithium atom, respectively.

Figure S3 (a) Top and (b) side views of three high-symmetry Li adsorption sites (C2, Si and H sites) on *g*-SiC₃. (c) Corresponding difference charge density.

Figure S4 The most stable configurations of different n (n = 1, 2, 3, 4 and 5) of

Li_nSi₂C₄.

Figure S5 The most stable configurations of different *n* (n = 2, 4, 6, 8 and 10) of Li_xSi₂C₆.

Figure S6 Snapshots of the final configurations of (a) $Li_5Si_2C_4$ and (b) $Li_{10}Si_2C_6$ at temperatures of 300 and 350 K at the end of 10 ps AIMD simulations.

Figure S7 Projected density of states (PDOS) of Li adsorption on (a) graphene, (b) *g*-SiC₂ and (c) *g*-SiC₃. The Fermi level is set to zero.

Figure S8 Band structures of (a) $Li_1Si_2C_4$, (b) $Li_2Si_2C_4$, (c) $Li_3Si_2C_4$, (d) $Li_4Si_2C_4$ and

(e) $Li_5Si_2C_4$, respectively. The Fermi level is set to zero.

Figure S9 Band structures of (a) $Li_2Si_2C_6$, (b) $Li_4Si_2C_6$, (c) $Li_6Si_2C_6$, (d) $Li_8Si_2C_6$ and

(e) $Li_{10}Si_2C_6$, respectively. The Fermi level is set to zero.