Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2018

C₃N/phosphorene heterostructure: a promising anode material in lithium-ion batteries

Gen-Cai Guo^{1,2}, Ru-Zhi Wang^{1,2*}, Bang-Ming Ming^{1,2}, Changhao Wang^{1,2}, Si-Wei Luo^{1,2}, Ming Zhang^{1,2}, Hui Yan^{1,2}

¹College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China

²Key Laboratory of Advanced Functional Materials, Education Ministry of China, Beijing University of Technology, Beijing 100124, China

Fig. S1. Band alignment of stress-containing C₃N and phosphorene. CBM and VBM are calculated by PBE method.

Fig. S2 Optimized structure of Li_{2.5}C₃NP.

^{*}To whom correspondence should be addressed: wrz@bjut.edu.cn

Fig. S3 Top and side views of the diff charge density of Li inserted into (a) H_N site, (b) B_{NP} site, (c) B_{CP} site and (d) H_{NP} site. The loss of electrons is indicated in blue and gain of electrons is indicated in yellow.