Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2019

Supporting Information

Mitigating the P2–O2 phase transition of high-voltage P2-Na_{2/3}[Ni_{1/3}Mn_{2/3}]O₂ cathode by cobalt gradient substitution for high-rate sodium-ion batteries

Peiyu Hou,^{a,1} Feng Li,^{b,1} Yangyang Wang,^b Jiangmei Yin,^a Xijin Xu^{a,*}

^aSchool of Physics and Technology, University of Jinan, Jinan, 250022, China

*E-mail: <u>sps_xuxj@ujn.edu.cn</u> (X. Xu)

^bSchool of Materials Science and Engineering, Nankai University, Tianjin, 300350,

China

¹These authors contributed equally.

Figure S1 Schematic diagram of nanoscale gradient cobalt substituted high-voltage P2-Na $_{2/3}$ [Ni $_{1/3}$ Mn $_{2/3}$]O₂ *via* coating-diffusion strategy.

Figure S2 SEM images of the as-prepared P2-Na_{2/3}[Ni_{1/3}Mn_{2/3}]O₂.

Figure S3 XRD pattern the nanoscale gradient cobalt substituted P2-Na_{2/3}[Ni_{1/3}Mn_{2/3}]O_2.

Figure S4 XPS results of the pristine nanoscale gradient Co^{3+} substituted P2-Na_{2/3}[Ni_{1/3}Mn_{2/3}]O₂: (a) Na 1s, (b) Ni 2p, (c) Mn 2p, and (d) Co 2p.

Figure S5 CV curves of the (a) bare and (b) gradient Co^{3+} substituted P2-Na_{2/3}[Ni_{1/3}Mn_{2/3}]O₂ between 2.5 and 4.5 V (vs. Na/Na⁺) at 0.1mV s⁻¹.

Figure S6 The relationship between Z_{im} and $\omega^{-1/2}$ in the low frequency region at varied states of charge/discharge: (a) charged to 3.5 V, (b) charged to 3.85 V, (c) charged to 4.3 V, (d) discharged to 4.1 V, (e) discharged to 3.75 V, and (f) discharged to 3.4 V.

Figure S7 Ex-situ XRD analysis of the bare P2-NaNMO electrode tested at various discharge/charge states.

		Elec			
Category	Structural formula	Capacity	Voltage	Energy density	Ref.
		(mAh g ⁻¹)	(V)	(Wh kg ⁻¹)	
	Na2/3Ni0.29Co0.13Mn0.58O2	164.2	3.55	583	Our work
	$Na_{2/3}Fe_{1/2}Mn_{1/2}O_2$	190	2.75	523	S1
	Na0.6Cr0.6Ti0.4O2	75	3.45	259	S2
	Na0.67Mn0.67Ni0.28Mg0.05O2	123	3.7	455	S3
P2-type	$Na_{2/3}Cu_{1/12}Ni_{1/4}Mn_{2/3}O_2$	130	3.62	471	S4
	Na2/3Ni0.283Mg0.05Mn2/3O2	150	3.5	525	S5
	$Na_{2/3}Ni_{1/3}Mn_{1/3}Ti_{1/3}O_2$	90	3.5	322	S6
	Na2/3Fe0.2Mn0.8O2	190	2.5	475	S7
	NaNi0.45Cu0.05Mn0.4Ti0.1O2	122	3.0	366	S8
	NaNi0.5Mn0.2Ti0.3O2	140	3.0	420	S9
	$Na_{0.8}Ni_{0.4}Ti_{0.6}O_2$	85	2.8	238	S10
O3-type	$NaNi_{0.6}Co_{0.05}Mn_{0.35}O_2$	145	2.5	363	S11
	$NaLi_{0.05}Mn_{0.50}Ni_{0.30}Cu_{0.10}Mg_{0.05}O_2$	172	2.75	473	S12
	NaCrO ₂	120	3.0	360	S13
	Na ₃ Ni _{1.5} Cu _{0.5} BiO ₆	92	3.2	294	S14
Polyanion	Na ₃ V ₂ (PO ₄) ₃	115	3.4	391	S15
	Na ₃ V ₂ (PO ₄) ₂ F ₃	116	3.6	418	S16
	Na ₃ V ₂ (PO ₄) ₂ O ₂ F	127.8	3.8	486	S17
	NaVOPO ₄	144	3.5	504	S18
	NaFePO ₄	146	2.4	350	S19
Prussian	Na1.89Mn[Fe(CN)6]0.97	150	3.5	525	S20
blues	Na0.61FeFe(CN)6	170	3.0	510	S21
Organics	Na ₄ C ₈ H ₂ O ₆	180	1.8	324	S22
	Na ₂ C ₆ O ₆	192	2.1	403	S23

Table S1 Comparison of the capacity, voltage and energy density of the gradient Co^{3+} substituted P2-Na_{2/3}[Ni_{1/3}Mn_{2/3}]O₂ and recent reports.

The Na⁺ diffusion coefficient (D_{Na^+}) can be calculated according to the following Equation:

 $D_{\rm Na+} = (R^2 T^2) / (2A^2 n^4 F^4 C^2 \delta^2)$

where R is the gas constant (8.314 J K⁻¹ mol⁻¹), T is the absolute temperature (298.15 K), A is the surface area of the electrode (0.785 cm²), n is the number of the electrons per molecule during oxidization (here, n=1), F is the Faraday constant (96500 C mol⁻¹), C is the concentration of Na⁺ (4.12×10⁻²×(0.76-*x*) mol cm⁻³, *x* indicates the extracted Na⁺ in Na_{2/3}[Ni_{1/3}Mn_{2/3}]O₂) and δ is the Warburg factor (Ω s^{-1/2}) associated with Z_{im} (the imaginary part of cell impedance, ohm) and ω (the frequency, Hz), calculated by Equation:

 $Z_{im} \propto \delta \omega^{-1/2}$

Table S2 The calculated Na⁺ diffusion coefficient (D_{Na^+}) during charge processes.

	Na^+ diffusion coefficient (D_{Na^+})					
Samples	Charged 3.45 V Charged 3.85 V C		Charged 4.3 V	Average		
	$(cm^2 s^{-1})$	$(cm^2 s^{-1})$	$(cm^2 s^{-1})$	$(cm^2 s^{-1})$		
Bare NaNMO	1.88×10 ⁻¹²	4.14×10 ⁻¹³	2.37×10 ⁻¹¹	8.66×10 ⁻¹²		
Co-gradient NaNMO	4.06×10 ⁻¹²	1.76×10 ⁻¹²	3.59×10 ⁻¹¹	1.34×10 ⁻¹¹		

Table S3 The calculated Na	⁺ diffusion	coefficient	(D_{Na^+})	during	discharge	processes.
----------------------------	------------------------	-------------	---------------------	--------	-----------	------------

	Na^+ diffusion coefficient (D_{Na^+})					
Samples	Discharged	Discharged	Discharged	Average		
	4.1 V	3.75 V	3.4 V	$(cm^2 s^{-1})$		
	$(cm^2 s^{-1})$	$(cm^2 s^{-1})$	$(cm^2 s^{-1})$			
Bare NaNMO	1.89×10 ⁻¹²	7.52×10 ⁻¹²	1.71×10 ⁻¹²	3.71×10 ⁻¹²		
Co-gradient NaNMO	4.92×10 ⁻¹²	2.66×10 ⁻¹¹	4.76×10 ⁻¹²	1.21×10 ⁻¹¹		

References

- S1 N. Yabuuchi, M. Kajiyama, J. Iwatate, H. Nishikawa, S. Hitomi, R. Okuyama, R. Usui, Y. Yamada and S. Komaba, *Nat. Mater.*, 2012, 11, 512–518.
- S2 Y. Wang, R. Xiao, Y. Hu, M. Avdeev and L. Chen, Nat. Comm., 2015, 6, 6954.
- S3 P. Wang, Y. You, Y. Yin, Y. Wang, L. Wan, L. Gu and Y. Guo, *Angew. Chem. Int. Ed.*, 2016, 55, 7445 –7449.
- S4 L. Zheng, J. Li and M. N. Obrovac, Chem. Mater., 2017, 29(4), 1623-1631.
- S5 N. Tapia-Ruiz, W. M. Dose, N. Sharma, H. Chen, J. Heath, J. Somerville, U. Maitra, M. S. Islam and P. G. Bruce, *Energy Environ. Sci.*, 2018,11, 1470-1479.
- S6 P. Wang, H. Yao, X. Liu, Y. Yin, J. Zhang, Y. Wen, X. Yu, L. Gu, Y. Guo, *Sci. Adv.*, 2018; 4: eaar6018.
- S7 W. M. Dose, N. Sharma, J. C. Pramudita, H. E. A. Brand, E. Gonzalo and T. Rojo, *Chem. Mater.*, 2017, 29, 7416–7423.
- S8 H.-R. Yao, P.-F. Wang, Y. Gon, J. Zhang, X. Yu, L. Gu, C. OuYang, Y.-X. Yin, E. Hu, X.-Q. Yang, E. Stavitski, Y.-G. Guo and L.-J. Wan, J. Am. Chem. Soc., 2017, 139, 8440–8443.
- S9 P. Wang, H. Yao, X. Liu, J. Zhang, L. Gu, X. Yu, Y. Yin and Y. Guo, *Adv. Mater.*, 2017, 29, 1700210.
- S10 S. Guo, H. Yu, P. Liu, Y. Ren, T. Zhang, M. Chen, M. Ishida, H. Zhou, *Energy Environ. Sci.*, 2015,8, 1237-1244.
- S11 J. Hwang, S. Oh, S. Myung, K. Y. Chung, I. Belharouak and Y. Sun, Nat. Comm., 2015, 6, 6865.
- S12 J. Deng, W. Luo, X. Lu, Q. Yao, Z. Wang, H. Liu, H. Zhou and S. Dou, *Adv. Energy Mater.*, 2018, 8, 1701610.
- S13 C. Yu, J. Park, H. Jung, K. Chung, D. Aurbachd, Y. Sun and S. Myung, *Energy Environ. Sci.*, 2015,8, 2019-2026.
- S14 P. Wang, Y. Guo, H. Duan, T. Zuo, E. Hu, K. Attenkofer, H. Li, X. S. Zhao, Y. Yin, X. Yu, and Y. Guo, ACS Energy Lett., 2017, 2, 2715–2722.
- S15 Y. Fang, L. Xiao, X. Ai, Y. Cao and H. Yang, Adv. Mater., 2015, 27, 5895-5900

S16 C. Zhu, C. Wu, C. Chen, P. Kopold, P. A. van Aken, J. Maier and Y. Yu, *Chem. Mater.*, 2017, 29, 5207–5215.

S17 J. Guo, P. Wang, X. Wu, X. Zhang, Q. Yan, H. Chen, J. Zhang and Y. Guo, *Adv. Mater.*, 2017, 29, 1701968.

S18 Y. Fang, Q. Liu, L. Xiao, Y. Rong, Y. Liu, Z. Chen, X. Ai, Y. Cao, H. Yang, J. Xie, C. Sun, X. Zhang, B. Aoun, X. Xing, X. Xiao and Y. Ren, *Chem*, 2018, 4, 1167-1180.

S19 M. Rahman, I. Sultana, S. Mateti, J. Liu, N. Sharmab and Y. Chen, *J. Mater. Chem. A*, 2017, 5,16616.

S20 J. Song, L. Wang, Y. Lu, J. Liu, B. Guo, P. Xiao, J. Lee, X. Yang, G. Henkelman and J. B. Goodenough, J. Am. Chem. Soc., 2015, 137, 2658–2664.

S21 J. Qian, C. Wu, Y. Cao, Z. Ma, Y. Huang, X. Ai and H. Yang, *Adv. Energy Mater.*, 2018, 8, 1702619.

S22 Wang, L. Wang, Z. Zhu, Z. Hu, Q. Zhao and J. Chen, Angew. Chem. Int. Ed., 2014, 53, 5892-5896.

S23 Y. Wang, Y. Ding, L. Pan, Y. Shi, Z. Yue, Y. Shi and G. Yu, Nano Lett., 2016, 16, 3329-3334