Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2019

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2018

Embedding CoO nanoparticles in yolk-shell N-doped porous carbon support for ultrahigh and stable lithium storage

Shuhai Wang,^{‡ab} Jun Teng,^{‡a} Yanyu Xie,^a Zhang-Wen Wei,^a Yanan Fan,^a Ji-Jun Jiang,^a Hai-Ping Wang,^a Heguang Liu,^c Dawei Wang,^{*a} and Cheng-Yong Su^a

^{*a*} Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China.

E-mail: wdawei@mail.sysu.edu.cn

^b School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P. R. China

^c School of Materials Science and Engineering, Xi'an University of Technology, Xi'an, 710048, China

Figure S1. SEM image of the as-synthesized ZIF-67 nanocrystals.

Figure S2. PXRD patterns of ZIF-67 nanocrystals.

Figure S3. SEM image of the as-synthesized CoO/C YSNSs.

Figure S4. TEM images of the as-synthesized CoO/C YSNSs at different magnification.

Figure S5. (a, b) TEM images of cracked CoO/C YSNSs. (c,d) TEM images of (c) the yolk and (d) the shell of cracked CoO/C YSNSs.

Figure S6. SAED patterns of (a) the outer shell and (b) inner yolk of cracked CoO/C YSNS.

Figure S7. SAED pattern of single CoO/C YSNS, which is in excellent agreement with the SAED patterns of the outer shell or inner yolk of cracked CoO/C YSNS (shown in Figure S6a and S6b, respectively). All these three SAED patterns can be assigned to face-centered cubic CoO crystals (JCPDS No. 43-1004), suggesting that the nanoparticles are CoO.

Figure S8. (a) N₂ sorption isotherms and (b) pore size distribution of the products synthesized by the controlled pyrolysis of ZIF-67 under diffrent conditions.

Figure S9. SEM images of the CoO/C YSNSs synthesized through the pyrolysis of ZIF-67 nanocrystals at 530 °C for 5 min. The Ar flow rate was 50 mL min⁻¹ and the temperature was raised to 530 °C at a ramp rate of 1 °C min⁻¹.

Figure S10. SEM images of the samples synthesized through the pyrolysis of ZIF-67 nanocrystals at 530 °C for 3 min. The Ar flow rate was 50 mL min⁻¹ and the temperature was raised to 530 °C at a ramp rate of 1 °C min⁻¹.

Figure S11. SEM images of cracked samples, in which the cracks (indicated with magenta circles) were introduced by the grinding and subsequent ultrasonication of samples synthesized through the pyrolysis of ZIF-67 nanocrystals at 530 °C for 3 min. SEM images of the samples taken prior to crack treatment are shown in Figure S10.

Figure S12. SEM images of the samples synthesized through the pyrolysis of ZIF-67 nanocrystals at 530 °C for 8 min. The Ar flow rate was 50 mL min⁻¹ and the temperature was raised to 530 °C at a ramp rate of 1 °C min⁻¹.

Figure S13. PXRD patterns of samples collected after heating ZIF-67 nanocrystals to (a) 450 and (b) 500 $^{\circ}$ C, respectively.

Figure S14. Kinetics analysis of the lithium storage behavior of CoO/C YSNSs. (a) Dependence of the cathodic/anodic peak current (i) on the sweep rate (v) at the log scale. (b) Normalized contribution of the capacitance and diffusion at various sweep rates.

Figure S15. TEM images at (a) low and (b) high magnification of the conventional CoO@C YSNSs.

Figure S16. PXRD pattern of the conventional CoO@C YSNSs.

Figure S17. Electrochemical impedance spectra of the CoO/C YSNSs and conventional CoO@C YSNSs.

Figure S18. (a) Specific capacities and (b) Coulombic efficiency of the conventional CoO@C YSNSs at a current density of 100 mA g^{-1} .

Figure S19. TEM imgaes of CoO/C YSNSs after 1000 charge-discharge cycles at a current density of 100 mA g⁻¹.

Table S1. Lithium stroage capacity and stability of representative high-performance cobalt oxides (CoO

Samples		Procedure	Capacity at low current density (mAh g ⁻¹ /mA g ⁻¹)	Capacity at high current density (mAh g ⁻¹ /mA g ⁻¹)	Cycling performance (mAh g ⁻¹ /mA g ⁻¹ /cycle)	Reference
CoO	nanowire	Multistep	1516/716	1331/3580	1249/0.716/50	Adv Funct Mater 2015 S1
clusters						
CoO/NC		Multistep	1200/89	533/8900	1300/89/150	J Mater Chem A 2017 S2
CoO@C		Multistep	866/100	400/5000	991/200/300	Adv Energy Mater 2018 ^{S3}
CoO/NC		One-step	1383/100	382/7140	1383/100/200	Small 2016 54
CoO/Co-C cuboids		Multistep	1050/100	195/20000	580/1000/2000	J Mater Chem A 2016 S5
CoO@BNG		Multistep	1554/100	410/1750	394/480/1750	Adv Mater 2018 S6
nanotubes						
CoO/graphene		Multistep	720/100	297/5000	707/1000/1000	J Power Sources 2014 S7
CoO/graphene/carbon		Multistep	1030/100	400/2000	690/500/352	J Mater Chem A 2014 S8
CoO/graphene		Multistep	640/100	170/20000	604/1000/5000	Adv Funct Mater 2013 89
CoO@RGO		Multistep	950/198	750/8900	890/880/400	Adv Funct Mater 2016 S10
CoO@C-Ni		Multistep	1193/200	536/4000	1120/1000/600	Nano Energy 2014 S11
Co ₃ O ₄ nanoparticles		Multistep	1000/100	870/1000	600/1000/500	J Power Sources 2015 S12
Co ₃ O ₄ microframes		Multistep	1092/100	620/8000	757/5000/4000	Chem Commun 2016 S13
Co ₃ O ₄ networks		Multistep	1033/100	758/2000	485/5000/700	Adv Funct Mater 2017 S14
Co ₃ O ₄ nanosheets		Multistep	1477/100	775/1000	775/1000/200	Inorg Chem Front 2018 S15
Co ₃ O ₄ /C nanotubes		Multistep	1160/500	853/10000	950/500/300	Adv Funct Mater 2018 S16
Co ₃ O ₄ /C nanofibers		Multistep	1173/50	607/3000	1121/50/100	Adv Funct Mater 2016 S17
Co ₃ O ₄ /NC		Multistep	1293/100	835/2000	798/1000/500	J Mater Chem A 2018 S18
Co ₃ O ₄ /NC		Multistep	1117/100	839/5000	892/100/100	Nano Energy 2015 S19
Co ₃ O ₄ /NC		Multistep	730/500	128/5000	612/1000/500	J Mater Chem A 2016 S20
Co ₃ O ₄ /NC		Multistep	818/100	529/5000	620/1000/2000	ACS Appl Mater Interfaces 2017 S21
Co ₃ O ₄ /CNT		Multistep	1281/100	643/3000	782/1000/200	Angew Chem Int Ed 2016 ^{\$22}
Co ₃ O ₄ /graphene		Multistep	2015/98	1134/2000	852/2000/2000	Adv Energy Mater 2016 S23
Co ₃ O ₄ /N-graphene		Multistep	1200/100	838/1000	812/1000/230	Small 2016 S24
Co ₃ O ₄ /RGO		Multistep	1200/1000	842/10000	1156/2000/200	Nano Energy 2015 S25
CoO/C YS	NSs	One-step	2050/100	748/790	1970/100/1000	This work
			1021/395	398/3950	680/1000/1000	

and Co₃O₄) based anode materials for lithium-ion batteries.

Note: NC: N-doped carbon; BNG: B, N-doped graphitic; CNT: carbon nanotubes; GO: graphene oxides; RGO: reduced graphene oxide.

Supplementary References

- S1. K. Cao, L. Jiao, Y. Liu, H. Liu, Y. Wang and H. Yuan, *Adv. Funct. Mater.*, 2015, 25, 1082-1089.
- S2. G. Liu and J. Shao, J. Mater. Chem. A, 2017, 5, 9801-9806.
- S3. F. F. Wu, S. S. Zhang, B. J. Xi, Z. Y. Feng, D. Sun, X. J. Ma, J. H. Zhang, J. K. Feng and S. L. Xiong, Adv. Energy Mater., 2018, 8, 8.
- S4. S. Wang, M. Chen, Y. Xie, Y. Fan, D. Wang, J.-J. Jiang, Y. Li, H. Grützmacher and C.-Y. Su, *Small*, 2016, **12**, 2365-2375.
- S5. X. Sun, G.-P. Hao, X. Lu, L. Xi, B. Liu, W. Si, C. Ma, Q. Liu, Q. Zhang, S. Kaskel and O. G.
 Schmidt, J. Mater. Chem. A, 2016, 4, 10166-10173.
- S6. H. Tabassum, R. Zou, A. Mahmood, Z. Liang, Q. Wang, H. Zhang, S. Gao, C. Qu, W. Guo and
 S. Guo, *Adv. Mater.*, 2018, **30**, 1705441.
- S7. S. J. R. Prabakar, R. S. Babu, M. Oh, M. S. Lah, S. C. Han, J. Jeong and M. Pyo, J. Power Sources, 2014, 272, 1037-1045.
- S8. M. Zhang, F. Yan, X. Tang, Q. Li, T. Wang and G. Cao, J. Mater. Chem. A, 2014, 2, 5890-5897.
- S9. X.-L. Huang, R.-Z. Wang, D. Xu, Z.-L. Wang, H.-G. Wang, J.-J. Xu, Z. Wu, Q.-C. Liu, Y. Zhang and X.-B. Zhang, *Adv. Funct. Mater.*, 2013, 23, 4345-4353.
- S10. K. Zhang, P. Li, M. Ma and J. H. Park, Adv. Funct. Mater., 2016, 26, 2959-2965.
- S11. J. Liu, Y. Xu, X. Ma, J. Feng, Y. Qian and S. Xiong, *Nano Energy*, 2014, 7, 52-62.
- S12. J. Zhang, T. Huang and A. Yu, J. Power Sources, 2015, 273, 894-903.
- S13. Y. Feng, X.-Y. Yu and U. Paik, *Chem. Commun.*, 2016, **52**, 6269-6272.
- S14. S. Zhu, J. Li, X. Deng, C. He, E. Liu, F. He, C. Shi and N. Zhao, Adv. Funct. Mater., 2017, 27, 1605017.

- S15. A. Li, M. Zhong, W. Shuang, C. Wang, J. Liu, Z. Chang and X.-H. Bu, *Inorg. Chem. Front.*, 2018, 5, 1602-1608.
- S16. C. Yan, Y. Zhu, Y. Li, Z. Fang, L. Peng, X. Zhou, G. Chen and G. Yu, *Adv. Funct. Mater.*, 2018, 28, 1705951.
- S17. C. Yan, G. Chen, X. Zhou, J. Sun and C. Lv, Adv. Funct. Mater., 2016, 26, 1428-1436.
- S18. H. Xue, Z. Na, Y. Wu, X. Wang, Q. Li, F. Liang, D. Yin, L. Wang and J. Ming, J. Mater. Chem. A, 2018, 6, 12466-12474.
- S19. Y. Hou, J. Li, Z. Wen, S. Cui, C. Yuan and J. Chen, *Nano Energy*, 2015, **12**, 1-8.
- S20. X. Han, W.-M. Chen, X. Han, Y.-Z. Tan and D. Sun, J. Mater. Chem. A, 2016, 4, 13040-13045.
- S21. W. Kang, Y. Zhang, L. Fan, L. Zhang, F. Dai, R. Wang and D. Sun, ACS Appl. Mater. Interfaces, 2017, 9, 10602-10609.
- S22. Y. M. Chen, L. Yu and X. W. Lou, Angew. Chem. Int. Ed., 2016, 55, 5990-5993.
- S23. Y. Dou, J. Xu, B. Ruan, Q. Liu, Y. Pan, Z. Sun and S. X. Dou, Adv. Energy Mater., 2016, 6, 1501835.
- S24. X. Yao, G. Guo, Y. Zhao, Y. Zhang, S. Y. Tan, Y. Zeng, R. Zou, Q. Yan and Y. Zhao, *Small*, 2016, 12, 3849-3860.
- S25. G. D. Park, J. S. Cho and Y. C. Kang, Nano Energy, 2015, 17, 17-26.